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Abstract

Developing test suites is a costly and error-prone process. Model-based test genera-
tion tools facilitate this process by automatically generating test cases from system
models. The applicability of these tools, however, depends on the size of the target
systems.

Here, we propose an approach to generate test cases by combining data abstrac-
tion, enumerative test generation and constraint-solving. Given the concrete speci-
fication of a possibly infinite system, data abstraction allows to derive an abstract
system, which is finite and thus suitable for the automatic generation of abstract
test cases with enumerative tools. To execute abstract test cases, we have to instan-
tiate them with concrete data. For data selection we make use of constraint-solving
techniques.

Key words: Conformance testing, model-based testing, test case
generation, data abstraction, constraint-solving.

1 Introduction

Software failures can have expensive or dangerous consequences, so assuring
the quality of a software product is very important. Software testing as a
dynamic approach to validate a software product is widely accepted by aca-
demic and industrial communities. Depending on the view on an implemen-
tation under test (IUT ), one differentiates between whitebox and blackbox
testing. While there is knowledge about internal details of the IUT available
for whitebox testing, this knowledge is absent in a blackbox test.
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Fig. 1. The test generation process

A test process involves the design of a test suite, its implementation and
its execution. Each of these phases can be tedious and time-consuming for
complex real-life systems. Therefore, there is ongoing research to automate
each of these phases. In this paper, we provide an approach to automatic
model-based test generation for blackbox testing.

Test cases can be generated either from a test model, i.e. a model of the
test suite, or from a model of an IUT . In the first case, test cases are designed
separately from the model of the IUT , for instance using frameworks like the
UML 2 Testing Profile [27]. This leads to well-tailored test cases, but might
also double the modeling effort during development. In the second case, the
existing models of the IUT are examined by a test case generator. Model-
based test generation is well-developed for conformance testing, which aims
at checking whether an IUT conforms with its specification [22,33].

Existing model-based test generators usually rely on the enumeration of
the state space of a specification. For open systems consisting of multiple
components, communicating with each other and the system’s environment,
enumerative approaches lead to a large (sometimes infinite) number of test
cases. Here, we propose an approach combining data abstraction, enumerative
test generation and constraint-solving to solve this problem (see Figure 1).

Given the specification of an open system, we apply data abstraction which
has already successfully been applied to model-checking open systems (e.g.
[30]) to obtain a (finite) abstract system. From the abstracted system, we
generate a set of abstract test cases. The generation of these test cases is
guided by a test purpose [22], which defines the scenario of interest. The
produced abstract test cases contain abstract data that should be concretized
prior to test execution.

To instantiate abstract test cases with concrete data, we employ constraint-
solving. In parallel to test generation and abstraction we transform the orig-
inal specification into a rule system, which is used further for data selection.
The test suite is transformed into a test oracle in order to retrieve test data.
We use the data to instantiate the test case and execute it. While being ex-
ecuted, the IUT might diverge from the selected path. By online constraint-
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solving, we dynamically adapt the course of the test execution.

This paper is organized as follows: In the following subsection, we discuss
papers that are related to our test generation approach. In Section 2, we
give an overview of conformance testing. In Section 3, we describe the syn-
tax and semantics of the specifications, we are working with. Preliminaries
for constraint-solving are given in Section 4. In Section 5, we describe our
approach for data abstraction, followed by the explanation of test generation
in Section 6. We applied our approach to a case study, which is described in
Section 7. Finally, we conclude with Section 8. Full proofs for the lemmata
in this paper can be found in [4].

Related Work

The closest to our approach is symbolic test generation [8,14,23,29,36]. This
method works directly on higher-level specifications given as Input-Output
Symbolic Transition Systems without enumerating their state space. Given
a test purpose and a specification, their product is built. Those works are
founded on the ioco theory [32]. The coreachability analysis is in these cases
over-approximated by Abstract Interpretation [10]. The concept of test gen-
eration with verification techniques (TGV, [22]) is also based on ioco.

The purpose and usage of abstraction techniques in our approach is con-
ceptually different from the one of symbolic test generation, since we use data
abstraction to avoid infinity caused by external data. This enables us to use
existing enumerative test generation techniques to derive abstract test cases
which are instantiated with concrete data derived by constraint-solving. In
the symbolic test generation approach, approximate coreachability analysis is
used to prune paths potentially not leading to Pass-verdicts. Both approaches
are valid for any abstraction leading to an over-approximation of the IUT ’s
behavior. They both employ constraint-solving to choose a single testing strat-
egy during test execution. Which approach is actually more suitable for which
class of systems can only be revealed by extensive use of the approaches.

Test data determination [17] for whitebox testing has been discussed in
several recent papers [16,31,34]. They are mainly based on the technique of
symbolic execution [9,24]. The constraint rule systems that we generate to
determine test data, are comparable to [28], where also constraint rules are
generated encoding the visible inputs and outputs, guards and internal state
changes. These rules are used to generate a set of test cases by transforming a
whole system specification into Prolog. However, test cases are already present
in our case and the rule system is only needed to find concrete test data.

2 Testing Theory

Our approach is based on conformance testing that validates whether an im-
plementation conforms to its specification. In a theory of conformance test-
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ing [32], the notion of conformance is formalized by a conformance relation
between specification and implementation that are assumed to be input out-
put labeled transition systems (IOLTS s). In this paper, we refer to a variant
of the theory, described in [22]. Quiescence is not discussed here.

An IOLTS is a tuple (Σ,Lab,→, σinit) with a non-empty set of states Σ, a
dedicated initial state σinit, an alphabet of action labels Lab and a transition
relation →⊆ Σ × Lab × Σ. The set of labels Lab consists of three subsets
of actions, LabI , LabO, and {τ} denoting input, output and internal actions.
Input and output actions are visible, internal actions are invisible. An IOLTS
is deterministic iff there is at most one outgoing transition for each action
λ ∈ Lab in each state σ ∈ Σ.

The behavior of an IOLTS M is given by sequences of states and transitions
β = σinit → σ1 → . . . starting from the initial state. Traces are derived
by projecting out the states, i.e. [[M ]]trace ⊆ Lab? is the set of traces of an
IOLTS M . The relation after is defined as the set of states Σ′, that can be
reached if the system is in state σ and action λ is executed (Σ′ = σ after λ).
It is also defined for an action λ possibly enabled after executing trace β
(Σ′ = β after λ).

IOLTS s modeling IUT s are assumed to be input-complete, i.e. the im-
plementation cannot refuse any input from the environment. Given a model
MIUT of an implementation and a model MSpec of a specification, the imple-
mentation conforms to the specification iff for each trace β in [[MSpec]]trace ,
MIUT after this trace β produces only outputs that can be produced by MSpec

after β. In case, MSpec is input complete, conformance is the standard trace
inclusion relation 4 .

We are interested in test generation where the test selection is guided
by a test purpose [22]. A test purpose is a deterministic IOLTS MTP that is
equipped with a non-empty set of accepting states Accept and a set of refusing
states Refuse which can be empty. Both accepting and refusing states are
trap states, i.e. they cannot be left by any action anymore. Moreover, MTP

is complete in all the states except for the accepting and refusing ones. This
means that in all states, all actions which are possible in MSpec are enabled.

Assumption 1 (Treatment of Data in Test Purposes) We assume that
a test purpose MTP is focused on the control flow of the described scenario
only, so that the information about an action carried in the labels of LabTP is
limited to the action names. Data parameters should not be subject of value
assignment and are thus replaced by the don’t-care parameter ∗.

Test generation guided by a test purpose consists in building a standard
synchronous product MSP of MSpec with MTP and finally transforming it into a
complete test graph MCTG by assigning verdicts as possible results of test case
execution (see Definition 2.2). The state space of the synchronous product

4 The difference with ioco [32] is that we do not abstract from τ -steps and that we do not
yet consider quiescence.

4
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MSP forms the reachable part of ΣSpec × ΣTP . The set →SP is constructed
by matching the transitions of MSpec and MTP . The set of accepting states is
defined as Σacc = {(s, ACCEPT )|s ∈ ΣSpec}.
Definition 2.1 (Complete Test Graph [22]) A complete test graph CTG
is an IOLTS MCTG = (ΣCTG ,LabCTG ,→CTG , σCTG

init ) which is determined from
the synchronous product MSP in the following way:

(i) The set of actions is determined by mirroring the set of actions of MCTG :
LabCTG = LabCTG

I ∪ LabCTG
O with LabCTG

O ⊆ LabSpec
I and LabCTG

I =
LabSpec

O .

(ii) The set of states is divided into four subsets ΣCTG = ΣCTG
L2A ∪̇ΣCTG

Inconc∪̇ΣCTG
Fail

and ΣCTG
Pass ⊆ ΣCTG

L2A which are defined as follows:
Lead to Accept: ΣCTG

L2A = {σ ∈ ΣSP |∃β ∈ [[MSP ]]trace(σ →SP
β σ′ ∧ σ′ ∈

ΣSP
acc)},

Pass: The set ΣCTG
Pass ⊆ ΣCTG

L2A is defined as ΣCTG
Pass = ΣSP

acc. This set may
not be empty.

Inconclusive: ΣCTG
Inconc = {σ′|∃σ ∈ ΣCTG

L2A , σ′ 6∈ ΣCTG
L2A , λ ∈ LabSP

O (σ →λ

σ′ ∈→SP)},
Fail: ΣCTG

Fail = {σCTG
Fail }, σCTG

Fail 6∈ ΣSP (implicit states).

(iii) The set of transitions of the CTG is defined as →CTG=→CTG
L2A ∪ →CTG

Inconc

∪ →CTG
Fail with:

• →CTG
L2A =→SP ∩(ΣCTG

L2A × LabCTG × ΣCTG
L2A ),

• →CTG
Inconc=→SP ∩(ΣCTG

L2A × LabCTG
I × ΣCTG

Inconc),
• →CTG

Fail = {σ →λ σCTG
Fail |σ ∈ ΣCTG

L2A ∧ λ ∈ LabCTG
I ∧ σ after λ = ∅}.

The reason for mirroring inputs and outputs in the CTG lies in the relation
between a test case and the IUT , as the input of the IUT is the output of the
test case and vice versa. However, since a test case can normally not test all
possible inputs of an IUT , its set of outputs LabCTG

O is limited to a subset of
the IUT ’s set of inputs LabSpec

I by building the synchronous product of MSpec

and MTP . The CTG may contain loops and choices between several outputs
in the same state or between inputs and outputs. For this reason it is not
controllable, i.e. the tester can for example not autoatically decide whether to
expect an input from the IUT or to send an output to it.

The sets of accepting and refusing states of MSP induce the sets of ac-
cepted and refused traces denoted [[MSP ]]atrace and [[MSP ]]rtrace respectively.
[[MSP ]]atrace are those traces that end in a state σ ∈ ΣSP

acc and [[MSP ]]rtrace =
[[MSpec]]trace\[[MSP ]]atrace . Depending on the trace executed during the actual
test, a verdict is assigned to assess the correctness of the IUT .

Definition 2.2 (Sound Verdict) Predefined values for verdicts are: Pass,
Inconc, Fail and None. The verdict is set by a function setverdict : [[MSP ]]trace →
Verdict with:

5
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setverdict(β) =


Pass , iff β ∈ [[MSP ]]atrace ∧ |β| > 0

Inconc , iff β ∈ [[MSP ]]rtrace ∧ |β| > 0

Fail , iff β 6∈ [[MSP ]]atrace ∪ [[MSP ]]rtrace ∧ |β| > 0

None , iff |β| = 0

The Pass verdict is assigned to those states of MCTG , which correspond to
the final states of traces from [[MSP ]]atrace and thus to the accept states in the
test purpose. The Inconc verdict is assigned to states from which accepting
states are not reachable. In this case, the state is still on a trace of MSpec

but the trace does not satisfy the test purpose (traces from [[MSP ]]rtrace). All
unspecified outputs lead to the Fail verdict.

As we said before, MCTG may contain choices between several outputs and
choices between inputs and outputs. The test cases, we treat in this paper, are
loopfree and controllable. A controllable test case MTC is derived by resolving
the choices mentioned, i.e. the test case does not contain these choices between
outputs or between inputs and outputs anymore. A test case is executed in
parallel with an IUT . A trace β ∈ [[MTC ]]Pass that leads to a Pass state is
chosen. From this trace, several branches with one step lead to Inconc states,
which represent traces in the test purpose ending in a refusing state.

Using test purposes as selection criteria, it is possible to generate test
cases on-the-fly without generating the whole state space of a specification.
However, a complete test graph can – due to all possible data – easily be
infinite or at least too large to handle for enumerative techniques.

3 Syntax and Semantics of Specifications

In this section, we define the syntax and semantics of the systems we are work-
ing with. A specification Spec is given by a quintuple Spec = (Sort ,Fun,Act ,
Comm,Proc) (for the specification language µCRL see [18]). It specifies an
open system that communicates with its environment. Sort defines a set of
data types for the declaration of variables. For each sort S there exists a set
of constructors, which have the form c :→ S or c : S1 × . . . × Sn → S, resp.,
with S1, . . . , Sn ∈ Sort . These constructors are used to form values of sort S.

In Fun, functions of the form f :→ S or f : S1 × . . . × Sn → S, resp.,
are declared. Each of these functions is defined by one or more axioms on
values of sorts S1, . . . , Sn. These axioms have the form s = t where s and t
are equally typed terms formed by any valid combination of typed variables
and function symbols.

Figure 2 shows a sort Bool representing booleans (see sort), that is given
by the two constructors T (for true) and F (for false, see func). The function
and is declared in map with three axioms defining properties of and (see rew).
Additionally, b is defined as a variable of sort Bool (see var).
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sort Bool

func T :→ Bool F :→ Bool

map and : Bool ×Bool → Bool

var b : Bool

rew and(T, b) = b and(b, T ) = b and(F, F ) = F

Fig. 2. Data type for booleans

The sets of actions Act and communicating actions Comm are necessary
to declare the actions and communication issues necessary for the process
definition. However, we will not discuss them here in detail. The process
itself is defined as Proc in terms of Linear Process Operators [1]. To enable
a graphical representation, however, we give a definition of processes based
on the theory of Symbolic Transition Systems. A process definition Proc can
thus be described by a four-tuple (Var ,Loc, σinit,Edg), where Var denotes
a finite set of variables, and Loc denotes a finite set of locations or control
states. A mapping of variables to values is called a valuation; we denote
the set of valuations by Val = {η | η : Var → D}. Let Σ = Loc × Val
be the set of states, where a process has one designated initial state σinit =
(linit, ηinit) ∈ Σ. The set Edg ⊆ Loc × Act × Loc denotes the set of edges.
An edge describes changes of configurations specified by an action from a set
Act . Considering locations as nodes and edges as edges, such a specification
can also be graphically represented as a Symbolic Transition System.

As actions, we distinguish (1) input of a signal s with a local variable to
which a value can be assigned, (2) output of a signal s together with a value
described by an expression, and (3) assignments. Every action except inputs
is guarded by a boolean expression g, its guard. The three classes of actions
are written as ?s(x), g B!s(e), and g Bx := e, respectively, and we use α, α′ . . .
when leaving the class of actions unspecified. For an edge (l, α, l̂) ∈ Edg , we
write more suggestively l −→α l̂.

The behavior of the process is then given by sequences of states ζ = σinit →
σ1 → . . . starting from the initial one. The step semantics is given by an
IOLTS M = (Σ,Lab,→, σinit), where → ⊆ Σ×Lab×Σ is a labeled transition
relation between states. The labels differentiate between internal τ -steps and
communication steps, either input or output, which are labeled by a signal
and a value being transmitted, i.e. ?s(v) or !s(v), respectively. We assume
that the set of signals coming from the environment and the set of signals
exchanged within the system are disjoint.

The semantics is given by the inference rules in Table 1. Receiving a
signal with a communication parameter x, l −→?s(x) l̂ ∈ Edg , results in an
update of the valuation η[x 7→ v] according to the parameter of the signal (rule

Input). Output, l −→g B!s(e) l̂ ∈ Edg , is guarded, so sending a message
involves evaluating the guard and the expression according to the current
valuation. It leads to a change of location of the process that sends the message
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l −→?s(x) l̂ ∈ Edg ∀v ∈ D
Input

(l, η) −→?s(v) (l̂, η[x 7→ v])

l −→g B!s(e) l̂ ∈ Edg [[g]]η = true [[e]]η = v
Output

(l, η) −→!s(v) (l̂, η)

l −→g B x:=e l̂ ∈ Edg [[g]]η = true [[e]]η = v
Assign

(l, η) →τ (l̂, η[x 7→ v])

Table 1
Step semantics of process definition P (Spec → M)

(rules Output). Assignments, l −→g B x:=e l̂ ∈ Edg , result in a change of the
location and an update of the valuation η[x 7→ v], where [[e]]η = v. Assignments
are internal, so assignment transitions are labeled by τ (rule Assign).

Although we are working with specifications containing only one process
definition, it does not limit our approach. The realization of our approach
works on linear process operators [1]. For these, existing linearization tech-
niques [19] can be used to obtain a single process definition for a parallel
composition of a finite number of process definitions by eliminating commu-
nication and parallel composition.

4 Constraint-Solving Preliminaries

In this section we give an overview of notions related to constraint-solving [25].

A constraint domain D consists of a set of n-ary constraint symbols which
describe relations and a logical theory T . An example for such a constraint
symbol is “≤”. A primitive constraint c(X1, . . . , Xn) is constructed from a
constraint symbol and terms in the corresponding value set Vi for every argu-
ment position. An example for a primitive constraint is ≤ (X, Y ) defining the
relation X ≤ Y .

A constraint is of the form C = c1 ∧ . . . ∧ cm where m ≥ 0 and c1, . . . , cm

are primitive constraints. We use vars(C) to denote the set of variables of
constraint C. A valuation θ of a constraint C is a mapping of variables of
vars(C) to values of 〈V1, . . . , Vn〉 in D. A logical theory T determines which
constraints hold and which constraints do not hold under a certain valuation
θ. If the constraint C holds for valuation θ under theory T of constraint
domain D, this is denoted D |= [[C]]θ. There are two distinct constraints true
and false which behave the same for any theory. The tautology true always
holds, while the contradiction false never holds.

Two problems are associated with C: the solution problem and the satis-
faction problem. The first one determines a particular solution, the latter one
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determines whether there is at least one solution. Let θ be a valuation for C.
θ is a solution for C if [[C]]θ holds, i.e. D |= [[C]]θ. A constraint C is satisfiable
if it has at least one solution.

A constraint solver solv() for a constraint domain D is a decision procedure
that takes as an input a constraint C and returns either true, false or unknown.
Whenever solv(C) returns true, C is satisfiable. Whenever solv(C) returns
false, there is no solution for C and C is unsatisfiable. The value unknown
indicates that a solution might exist, but could not be determined.

A user defined constraint is of the form p(t1, . . . , tn) where p is an n-ary
predicate and t1, . . . , tn are terms (variables, constants or functions) from a
constraint domain. An example for a user-defined constraint is a(X, f(Y )),
which takes two parameters (the variable X and the function f(Y ), with
Y again being a variable). A literal is either a primitive constraint or a user
defined constraint. A rule R, for instance in Prolog, is of the form A :−B where
A is a user defined constraint and B is a sequence of literals. For example,
a(X, f(Y )) :−X > 0, Y < X incorporates the two primitive constraints X > 0
and Y < X in the sequence of literals. A fact is a rule with an empty sequence
of literals, i.e. a rule of the form A :− 2, where 2 is used to denote an empty
sequence of literals. A constraint logic program P is a sequence of rules.

A goal or a query G is a sequence of literals, i.e. G = L1, . . . , Lm with
m > 0. If m = 0, then G is an empty query denoted 2. Let query G be of
the form L1, . . . , L(i−1), Li, L(i+1), . . . , Lm and Li = p(s1, . . . , sn). A state in a
constraint logic program is given by a pair 〈G | C〉 with G being the actual goal
and C being the constraint store, storing all relevant conditions for this state.
The transitions between these states are derivation steps. A derivation [25] is
a full trace from the initial to the final state, 〈G1 | C1〉 ⇒ . . . ⇒ 〈2 | C〉.

5 Data Abstraction

In this section, we describe the idea of data abstraction to close open systems
for test generation. First, we explain the approach, before we discuss the
relation between a concrete and an abstracted system.

We do not make any assumptions about the environment of an IUT , i.e.
we take the most general one. Signals coming from the environment can thus
have any value. This often boosts the state space of the system to infinity. We
abstract data that is directly or indirectly influenced by the environment to
one value chaos, denoted>>. Values that are not influenced by the environment
remain the original ones, and so they should be treated in the same way as
in the original system. This data abstraction was first proposed in [30] for
model checking open systems. A system obtained by this approach is a safe
abstraction of the original one, meaning, it shows at least the behavior of the
original system [21,30].

We implement data abstraction as a transformation on the level of sys-
tem specification. Abstraction on the level of specifications is well developed
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within the Abstract Interpretation framework [10,11,12]. The program trans-
formation implementing this data abstraction transforms the signature and
the process definition. For each sort S , we introduce a sort S>> that consists
of two constructors, >>S :→ S>> and κ : S → S>>. The first constructor defines
a >> value of the sort. The constructor κ (known) lifts values of sort S to
values of sort S>>. For each concrete mapping m : S1 × · · · × Sn → Sn+1, we
define a mapping m>> : S>>1 × · · · × S>>n → S>>n+1 mimicking the original one on
the abstracted sorts. In the general case, mimicking is ensured by providing
the following rewrite rules for each abstract mapping m>>:

m>>(κ(x1), . . . , κ(xn)) = κ(m(x1, . . . , xn))

m>>(x1, . . . , xn) = >>Sn+1 if xi is >>Si
for some i ∈ {1; ...; n}

The transformation of the process specification consists in lifting all vari-
ables, expressions and guards to the new sorts. Each occurrence of a variable
x of sort S , is substituted by a variable x>> of type S>> where S>> is a safe
abstraction of sort S. Each occurrence of an expression e of type S is lifted
to the expression e>> of sort S>>. Thereby, all the newly introduced symbols
(constructors and rewrite rules) are used and replace the original ones.

Transformation of guards is similar to the transformation of expressions.
Every occurrence of a guard g is lifted to a guard g>> of type Bool>>. While
transforming guards we should ensure that the abstract system shows at least
the behavior of the original system. Therefore, the guards valuated to κ(true)
or κ(false) behave like guards evaluating to true or false, respectively. The
guards valuated to >> behave as guards evaluating to true. We implement this
by introducing an extra mapping γ : Bool>> → Bool that is true whenever a
guard is evaluated either to >> or to κ(true) and false otherwise. To avoid
introducing unnecessary nondeterminism, we apply a more refined, technically
speaking a non-strict, transformation to the sort Bool. Its abstraction, sort
Bool>>, is shown in Figure 3.

Definition 5.1 (May Semantics for Chaotic Guards) While a guard g
is defined as a function g : Σ → {true, false}, a chaotic guard is defined as
a function g>> : Σ>> → {true, false, >>}. To map this three valued logic back
to a two valued logic, a may-function γ : {true, false, >>} → {true, false} is
defined as follows: γ(κ(true)) = true, γ(κ(false)) = false and γ(>>) = true.

After transforming the signature and lifting system variables, expressions
and guards, we obtain a system that still can receive all possible values from
the environment. The environment can influence data only via inputs. We
transformed every input l −→?s(x) l̂ from the environment into an input of
signal s parameterized by the >>-value of the proper sort followed by assigning
this >>-value to the variable x (see rule SInput>> in Table 2). Assignments
and outputs are treated as explained before. The semantics of the transformed
system are given by the inference rules in Table 3. Given an IOLTS M , we
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sort Bool>>

func >>Bool : → Bool>>

κBool : Bool → Bool>>

map and>> : Bool>> ×Bool>> → Bool>>

γ : Bool>> → Bool

var b, b′ : Bool

rew and>>(κ(b), κ(b′)) = κ(and(b, b′))

and>>(>>Bool, κ(F )) = and>>(κ(F ),>>Bool) = κ(F )

and>>(>>Bool, κ(T )) = and>>(κ(T ),>>Bool) = >>Bool

and>>(>>Bool,>>Bool) = >>Bool

γ(>>Bool) = T

γ(κ(b)) = b

Fig. 3. Transformed sort Bool>>

l −→?s(x) l̂ ∈ Edg
SInput>>

l −→?s(>>)−→true B x:=>> l̂ ∈ Edg>>

l −→g B!s(e) l̂ ∈ Edg
SOutput>>

l −→γ(g>>) B!s(e>>) l̂ ∈ Edg>>

l −→g B x:=e l̂ ∈ Edg
SAssign>>

l −→γ(g>>) B x:=e>> l̂ ∈ Edg>>

Table 2
Transformation of edges (Spec → Spec>>)

derive M>> by applying data abstraction on the specification of M .

M>> can receive only >> values from environment, so the infinity of envi-
ronmental data is collapsed into one value. Basically, the transformed system
shows at least the traces of the original system where data influenced by en-
vironment are substituted by >> values. This means, that M>> simulates M .
This simulation relation is now defined for concrete and abstracted IOLTS s.
It is not a standard relation, since we allow the abstraction of actions. Further,
we give an overview of preservation results based on [21,20].

Definition 5.2 (≤-Simulation) Let M1 = (Σ1, Lab1, →1, σ1
0) and M2 =

(Σ2, Lab2, →2, σ2
0) be two IOLTSs. (≤a,≤b) with ≤a⊆ Σ1 × Σ2 and ≤b⊆

Lab1×Lab2 is a simulation, iff ∀σ1, σ̂1, σ2, λ1 ∃σ̂2, λ2

(
σ1 ≤a σ2∧σ1 →λ1 σ̂1 ⇒

(λ1 ≤b λ2 ∧ σ̂1 ≤a σ̂2 ∧ σ2 →λ2 σ̂2)
)
, where σ1, σ̂1 ∈ Σ1, λ1 ∈ Lab1, σ2, σ̂2 ∈

Σ2, λ2 ∈ Lab2.

We write M1 �≤ M2 if there is such a relation between M1 and M2, also

11
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l −→?s(x)−→true B x:=>> l̂ ∈ Edg>>
Input>>

(l, η>>) −→?s(>>) (l̂, η>>[x 7→>>])

l −→γ(g>>) B!s(e) l̂ [[γ(g>>)]]η>> = true [[e>>]]η>> = v
Output>>

(l, η>>) −→!s(v) (l̂, η>>)

l −→γ(g>>) B x:=e l̂ [[γ(g>>)]]η>> = true [[e>>]]η>> = v
Assign>>

(l, η>>) →τ (l̂, η>>[x 7→ v])

Table 3
Step-semantics of transformed edges (Spec>> → M>>)

relating their initial states σ1
init ≤a σ2

init.

Before relating traces of the transformed system to the traces of the original
system, we define an order relation on the states and on the labels of the
systems. To relate states Loc × Val of the original system with the states of
the transformed system Loc × Val>>, we define the relation ≤S as:

Definition 5.3 (Relation ≤S) Let σ = (l, η) and σ>> = (l′, η>>) be two states
of the IOLTSs M and M>> with specifications Spec and Spec>>. ≤S: (Loc ×
Val) × (Loc × Val>>) is defined as σ ≤S σ>> iff l = l′ ∧ ∀x ∈ Var

(
[[x]]η>> =

>> ∨ [[x]]η>> = κ([[x]]η)
)
.

To relate labels Lab of the original system with the labels of the trans-
formed system Lab>>, we define the relation ≤L: Lab × Lab>>.

Definition 5.4 (Relation ≤L) Let λ ∈ Lab and λ>> ∈ Lab>>. Then λ ≤L λ>>

is defined as follows:

• τ ≤L τ

• ?s(v) ≤L?s(v′) iff either v′ = >> or v′ = κ(v)

• !s(v) ≤L!s(v′) iff either v′ = >> or v′ = κ(v)

The following lemma states the simulation relation between M and M>>

(see also the diagram below).

Spec
Tab. 2−→ Spec>>

Tab. 1
y yTab. 3

M �≤ M>>

Lemma 5.5 Let Spec be a specification and Spec>> be a specification obtained
from Spec by the transformation defined in this section. Let M and M>> be
IOLTSs obtained from respectively Spec and Spec>> by the rules in Table 1 or
Table 3, respectively. Then M �≤ M>> and (≤S,≤L) is this simulation.

12
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Proof sketch: The lemma is proven by checking the conditions for simu-
lation in Definition 5.2 separately for input and output actions as well as for
τ -steps. 2

In the rest of the section, we lift this simulation relation on specifications
to the inclusion of accepted and refused traces in the synchronous product of
the abstracted system and the test purpose.

Lemma 5.6 Let M , N be IOLTSs with M �≤ N based on the simulation
(≤S,≤L). Let P be a test purpose. Then M × P �≤′ N × P with (≤S′ ,≤L)
being this simulation. In this case holds: (σM , σP ) ≤S′ (σN , σ̂P ) iff σM ≤S σN

and σP = σ̂P . The relation ≤L is the same as defined in Definition 5.4.

Proof sketch: The proof is analogous to that for Lemma 5.5, extended
for the consideration of a synchronous product. 2

Definition 5.7 (≤-inclusion on traces) Let ζ and ρ be traces of IOLTSs
M1 and M2. Trace ρ ≤-includes ζ, written ζ ≤ ρ, iff |ζ| = |ρ| and ζλ(i+1) ≤L

ρλ(i + 1) for all i ∈ {0; . . . ; |ζ|}.
Definition 5.8 (≤-inclusion on automata) The set of traces generated by
IOLTS M2 ≤-includes the set of traces generated by IOLTS M1, written as
[[M1]]trace ⊆≤ [[M2]]trace , iff for every trace ζ of M1 there exists a trace ρ in M2

such that ζ ≤ ρ.

Lemma 5.9 Let TP be a test purpose, MSP be a synchronous product of
M with MTP , and M>>

SP be a synchronous product of M>> with MTP . Then
[[MSP ]]atrace ⊆≤ [[M>>

SP ]]atrace and [[MSP ]]rtrace ⊆≤ [[M>>
SP ]]rtrace .

Proof sketch: To prove the lemma, we have to take Assumption 1 into
consideration. We first show that the set of accepted and refused traces of
MSP in isolation is a subset of the union of accepted and refused traces in
M>>

SP . Then it is shown that the accepted traces of MSP and the refused traces
of M>>

SP do not have a common intersection. The same is shown for the refused
traces of MSP and the accepted traces of M>>

SP . 2

6 Testing with Abstractions

In this section, we describe the approach of test selection and execution with
data abstraction. First, we give an algorithmic overview of the whole process.
Then, we describe how the necessary rule system is built and how test selection
and execution work. Finally, we review our approach and prove the soundness
of verdicts assigned to a test execution.

Test Process Overview

In Figure 4, the test process is described as an algorithm. Its input parameters
are a specification Spec and a test purpose TP . Spec is abstracted to Spec>>

according to Section 5. Then M>>
Spec is generated from Spec>> and MTP from

13
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Algorithm 6.1 (SelectAndExecTest(Spec,TP) : verdict ∈
{None, Pass, Inconc, Fail})

1 setVerdict(None);

2 Spec>> := abstract(Spec);

3 RS := buildRuleSystem(Spec);

4 M>>
Spec := generateLTS (Spec>>);

5 MTP := generateLTS (TP);

6 M>>
CTG := generateCTG(M>>

Spec, MTP);

7 M>>
TC := selectATC (M>>

CTG);

8 while M>>
TC 6= no testcase

9 (β, θ) := NewPassTrace(no trace, ∅, M>>
TC );

10 if (β, θ) 6= no solution

11 then

12 ExecTest(β, θ, no trace, M>>
TC );

13 terminate;

14 fi

15 M>>
TC := selectATC (M>>

CTG);

16 elihw

Fig. 4. Selection and execution of tests

TP . In parallel, a rule system RS is built, containing all conditions from
Spec. RS will later be needed to parameterize test cases with concrete data.
From the two IOLTS s, the complete test graph M>>

CTG is generated using
TGV (cf. [3]). M>>

CTG may contain choices between several outputs to the
IUT or even between inputs and outputs, so it is not necessarily controllable.
Furthermore, M>>

CTG is an overapproximation of all test cases of the original
system which satisfy the test purpose, so it may contain traces leading to
unsound verdicts.

Our goal is to obtain parameterizable test cases (for instance in TTCN-
3 [13]) together with information about data values to instantiate them. To
make tests repeatable, we are interested in test cases where no nondeterminis-
tic choice is possible between several outputs or between inputs and outputs.
Therefore, we single out a subgraph of M>>

CTG that contain neither choices be-
tween several outputs or choices between inputs and outputs, nor loops. We
refer further to this subgraph as an abstract test case (ATC), denoted M>>

TC .

Even though we are still working on the level of IOLTS s here, we now
have to introduce variables for parameterization. In M>>

TC , each occurrence of
>> is substituted by a unique symbolic variable vij parameterizing inputs and
outputs, respectively. The double index is necessary to identify the state, in
which the transition with the variable starts (index i) and to uniquely identify
this variable within the set of variables on transitions from state i (index j).

14
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These variables are embedded into the transition labels of the IOLTS , but are
distinguished as a separate set Var in remainder of this section.

Definition 6.1 (Parameterizable Test Case) Given a parameterized com-
plete test graph M>>

CTG(VarCTG) = (Σ,VarCTG ,Lab,→CTG , σinit), a parame-
terized test case M>>

TC (VarTC ) is an input complete IOLTS (Σ,VarTC ,Lab,
→TC , σinit) such that VarTC ⊆ VarCTG holds for the sets of symbolic variables
of M>>

TC and M>>
CTG . The set of states of the test case is a subset of the set of

states of the complete test graph, and the test case shows only Pass, Inconc and
Fail traces possible in the complete test graph, i.e. [[M>>

TC ]]Pass ⊆ [[M>>
CTG ]]Pass,

[[M>>
TC ]]Inconc ⊆ [[M>>

CTG ]]Inconc, and [[M>>
TC ]]Fail ⊆ [[M>>

CTG ]]Fail.

Before a parameterizable test case can be executed, it must be instantiated.
This means, that each of the variables vij must be set to a value such that a
Pass-state in the test case can be reached with this valuation. In order to do
so, a trace to Pass is selected with NewPassTrace (Figure 5). If such a trace
exists, it can be executed, otherwise the next possible trace is searched. If no
trace can be found in this abstract test case, the next test case is generated
and examined for traces to Pass. If no such trace could be determined at all,
the algorithm terminates with the final verdict None without executing any
test cases.

The algorithm selects only one trace and executes it, where necessary dy-
namically adapting to the IUT ’s reaction on input. A complete test suite
consisting of more than one trace (irrespective of possible adaptions), could
be executed by introducing a loop which repeats the trace selection and exe-
cution actions. The final verdict would then be the upper limit of verdicts for
the single tests (see Definition 2.2).

Executing the trace β under a valuation θ does not mean, that this execu-
tion is bound to that trace for the whole execution. At some point during test
execution, the IUT may nondeterministically leave the precalculated trace.
In this case, the test execution algorithm tries to find another trace to a Pass
verdict. This new trace, however, must contain the part of β, which has yet
been executed, as its prefix. The trace valuation can also only be extended by
new values.

Building the Rule System and Queries

A parameterizable test case may contain traces introduced by data abstrac-
tion. Moreover, information about the relationship of symbolic variables or
concrete values they can be substituted with is absent. To sort out spurious
traces and to obtain valuations for symbolic variables, we employ constraint-
solving.

We transform the original specification Spec to a constraint logic program
or a rule system RS. This rule system forms the basis for test oracles or
queries. A Pass-trace β which is selected from M>>

TC is transformed into a
query G := Oβ(θ). Here, θ is a possible (i.e. valid) setting of data values,
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l −→g B!s(e) l̂ ∈ Edg
ROutput

s(state(l,Var), state(l̂,Var), param(e)) :− g.

l −→?s(x) l̂ ∈ Edg
RInput

s(state(l,Var), state(l̂,Var [x 7→Y ]), param(Y )).

l −→g B x:=e l̂ ∈ Edg
RAssign

τ(state(l,Var), state(l̂,Var [x 7→ e]), param) :− g.

Table 4
Transformation of specification Spec into rule system RS

with which β can be instantiated. Let the set of symbolic variables in the
specification be Var symb . If there is no solution for the query, β is a spurious
trace introduced by data abstraction and we remove the trace from the test
case. If there is a solution θ : Var symb → D in RS for the query, β can be
mapped to the trace of the original system.

We refer to trace β with symbolic variables substituted according to θ as
an instantiated trace denoted β(θ). The instantiated trace β(θ) is a trace of
the original system MSpec. As we will prove later, the verdict assigned by β(θ)
is sound. Knowing at least one possible solution for any Pass-trace is already
enough to start executing test case M>>

TC , parameterized with this solution θ.
Further, we define the transformation of an original specification into a rule
system and obtain a query from a Pass- or Inconc-trace of the test case.

Transformation from the original specification Spec to the rule system
RS is defined by the inference rules given in Table 4. These rules map
edges of the specification to rules of RS. All the rules are of the form
rule name(state(l,Var), state(l̂,Var

′
), param(Y )) :− g. The name of the rule

is that of the corresponding action (τ for internal assignments). The first state
parameter describes the source state of the edge in terms of the specification
location and the process variables. The second state parameter describes the
changed target state in the same terms. The third parameter param contains
all symbolic variables or expressions which form the action parameters.

The rules RInput, ROutput and Assign transform input, output and
internal assignment actions to constraint rules. The guard of an output or
an internal action forms the body of the corresponding rule. Rules for input
actions always holds, since no guards are specified for inputs. The action pa-
rameters param are given by the expression e for an output, or by a variable Y
for an input action, while internal actions have no action parameters. Finally,
input and internal assignment actions change values of variables. This change
is noted in the second state parameter of the respective rule.

After the rule system RS has been generated, we proceed with choosing
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oracle(i, r) =

[] , iff r = [][
sig(τ)(state(linit,Var init), state(l1,Var 1), param)|oracle(1, r′)

]
,

iff i = 0 ∧ r = [σ →τ σ′|r′][
sig(s)(state(linit,Var init), state(l1,Var 1), param(Y ))|oracle(1, r′)

]
,

iff i = 0 ∧
(
r =

[
σ →?s(Y ) σ′|r′

]
∨ r =

[
σ →!s(Y ) σ′|r′

] )[
sig(τ)(state(li,Var i), state(li+1,Var i+1), param)|oracle(i + 1, r′)

]
,

iff i > 0 ∧ r = [σ →τ σ′|r′][
sig(s)(state(li,Var i), state(li+1,Var i+1), param(Y ))|oracle(i + 1, r′)

]
,

iff i > 0 ∧
(
r =

[
σ →?s(Y ) σ′|r′

]
∨ r =

[
σ →!s(Y ) σ′|r′

] )
Table 5

Transformation of a trace of M>>
TC into oracle OTC

a Pass-trace β in M>>
TC and transforming it into an oracle Oβ := oracle(0, β)

using the function given in Table 5. Basically, an oracle is a sequence of rule
invocations corresponding to the transitions along the chosen Pass-trace. Each
transition along the trace is transformed into a rule invocation, which has the
name of the action under consideration given as sig(s). The parameters of this
rule invocation are the state of the system where the transition starts (first
parameter), the system’s state after the transition and the action’s parameters.
In the first transition, which is characterized by the counter i = 0, the starting
state of the transition is set to the initial state of the system. The function
oracle then iterates through the trace and appends all rule invocations to one
list, which forms the oracle.

In the oracle Oβ, all free variables in the system have not yet been bound
to values. This happens by applying the constraint solver to the rule system
RS and the oracle Oβ using the function θ := solve(RS,Oβ, θconst).

Definition 6.2 (Partial Valuation) Let vars : [[M ]]trace → Var symb be a
function that projects the set of variables Var symb of M to that subset that is
actually used in a given trace from [[M ]]trace .

Given a valuation θ : vars(β) → D and a trace δ, which is a prefix
of β, we define the partial valuation bθcδ : vars(δ) → D such that ∀x ∈
vars(δ)

(
bθcδ(x) = θ(x)

)
.

The parameter θconst ⊆ θ can be used to define a set of constant valuation
assignments. For instance, if a prefix δ of β has already been executed during a
test and only for the suffix of β a new valuation has to be found, θconst := bθcδ

can be defined as this set of constant values. In all cases, where this situation
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is not applicable, i.e. no part of θ has to be constant, the optional parameter
θconst can be defined as ∅ and is further ignored. Having calculated a valuation
θ for a trace β, the query G := Oβ(θ) can be built and it can be checked,
whether < G , true > is solvable.

When describing the test selection process in Section 6, the algorithm
NewPassTrace has already been mentioned. Its task is to select a trace β
from the abstract test case and find a valuation θ, so that β(θ) is a trace in
the original system specification Spec. Therefore, the algorithm makes use of
the oracleOβ and the rule systemRS. In the following lemma, we claim that if
an oracle based on RS holds under a certain valuation then the corresponding
trace under this valuation is a valid trace in MSpec and vice versa.

Lemma 6.3 Let β(θ) be a trace β of the ATC instantiated with the valuation
θ. Then: RS ` Oβ(θ) ⇔ β(θ) ∈ [[MSpec]]trace .

Proof sketch: To prove this lemma, both directions of implications have
to be proven separately. For each of the directions, the initial and the general
case of a transition in MSpec are regarded separately for input, output and
internal assignment actions. 2

Algorithm 6.2 (NewPassTrace(δ, θ, M>>
TC ) : (β, θ′) ∈ [[M>>

TC ]]Pass ×
{Var symb → D})

1 β := selectFirst(δ, [[M>>
TC ]]Pass);

2 while β 6= no trace

3 Oβ := oracle(0, β)

4 θ′ := solve(RS,Oβ, bθcδ)

5 G := Oβ(θ′)

6 if < G , true > is satisfiable

7 then return (β, θ′);

8 else β := selectNext(δ, [[M>>
TC ]]Pass);

9 fi

10 elihw

11 return no solution;

Fig. 5. Pass trace selection procedure

The algorithm NewPassTrace, shown in Figure 5, finds a new trace to a
Pass verdict together with a valid valuation. The algorithm takes a trace prefix
δ, a valuation θ and a test case M>>

TC as input parameters and returns a trace
β ∈ [[M>>

TC ]]Pass as well as an appropriate valuation (here θ′). It iterates over
all possible traces to Pass with prefix δ in the test case and returns the first,
which contains δ as its prefix and satisfies the query G under the valuation
θ′. θ′ is derived by solving the rule system RS for the trace β with a partial
solution bθcβ given. This partial solution cannot be changed anymore, since it
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Algorithm 6.3 (ExecTest(β, θ, δ,M>>
TC ) : verdict ∈

{None, Pass, Inconc, Fail})
1 step := next(β, δ);

2 case step

3 no step :

4 if |δ| > 0

5 then setVerdict(Pass);

6 else setVerdict(None);

7 fi

8 τ : ExecTest(β, θ, add(δ, step), M>>
TC );

9 !s(X): sendToIUT (s([[X]]θ));

10 ExecTest(β, θ, add(δ, step), M>>
TC );

11 ?s(X): receiveFromIUT (sig(Y ));

12 if sig = s ∧ [[Y ]] = [[X]]θ;

13 then ExecTest(β, θ, add(δ, step), M>>
TC );

14 else

15 δ′ := add(δ, sig(Y ));

16 Oδ′ := oracle(0, δ′);

17 Gδ′ := Oδ′(bθcδ[X 7→[[Y ]]]);

18 if ¬satisfiable(< Gδ′ , true >)

19 then setVerdict(Fail);

20 else

21 (β′, θ′) := NewPassTrace(δ′, bθcδ[X 7→[[Y ]]], M
>>
TC );

22 if (β′, θ′) = no solution

23 then setVerdict(Inconc);

24 else ExecTest(β′, θ′, δ′, M>>
TC );

25 fi

26 fi

27 fi

28 esac

Fig. 6. Test execution procedure

gives the (proper) valuation for the already executed trace δ. The new trace
found by NewPassTrace must satisfy < Oβ(θ′), true >. If it does not, then
the next possible trace to Pass is selected.

Test Execution

In an IUT , nondeterminism may be induced, for instance, by interleavings of
the behavior of single components. In these cases, it is possible that during test
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execution the IUT leaves a trace to Pass which had been calculated beforehand
and which is in principle a valid trace. Test execution then has to be adapted
dynamically to the new situation.

Let β be a Pass-trace of M>>
TC , θ be a solution for the query obtained from

β by the rules in Table 5, and δ be the already executed prefix of β (initially
it is empty). Let next be a function that returns the next step of trace β
or no step, if no such step exists. Sending a signal to the IUT happens by
the function sendToIUT , receiving by receiveFromIUT . Both functions are
parameterized with the signal to be sent or received.

Test execution is defined by the recursive algorithm in Figure 6. First, the
actual step under consideration is calculated. Then, a decision is made, based
on the type of this step. If the next step is no step, meaning that the end
of the trace has been reached, the algorithm assigns either the None verdict,
if no steps have yet been executed, or the Pass verdict. In this case, the test
execution finished without finding any failures or inconclusive situations in the
IUT . If the actual step is a τ -step, ExecTest is invoked recursively, adding
the τ -step to the trace prefix, which has already been executed before. An
output step !s(x) is treated similarly, except that the signal s is sent to the
IUT . Its parameters are instantiated according to θ.

Handling an input ?s(X) is more complex. First, the input is received
from the IUT as ?sig(Y ). If now both the signal sig and the valuation of its
parameters [[Y ]] are as expected, then the step is just added to δ and a recur-
sive invocation of the execution algorithm happens. If the signal sig or the
parameter valuation does not fit the expectations, then it is checked, whether
test execution has already left the valid traces of the system specification. In
this case, Fail is assigned, otherwise a new trace to Pass with the new valu-
ation is searched. If no such trace exists, Inconc is assigned. Otherwise, the
algorithm is invoked recursively and test execution goes on.

Further, we argue the correctness of our approach by proving that the
verdicts assigned to the IUT after having applied the algorithm ExecTest, are
sound. Let Spec be a specification and TP be a test purpose. Let Spec>> be a
specification obtained by transforming Spec by the rules in Table 2. Let M>>

be an IOLTS generated by the rules in Table 3 and RSSpec be a rule system
generated by the rules in Table 4.

First, the synchronous product M>>
SP ⊆ M>>

Spec ×MTP is built. From M>>
SP ,

the abstract complete test graph M>>
CTG is derived. From M>>

CTG , we get an
abstract controllable test case M>>

TC , from which we select a trace β to Pass.
This trace is instantiated with data, which has been derived from a query to
RSSpec. Trace β is then executed. Its already executed prefix is the trace δ.

Lemma 6.4 (Termination of Test Execution) Given a finite (non-cyclic)
trace β, the test execution algorithm (Figure 6) always terminates assigning a
verdict, given that the IUT is deadlock-free.

Proof sketch: Given a finite trace, the algorithm always analyzes the
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next step in this trace. If there is no next step, i.e. the end of trace is reached,
the algorithm terminates with Pass or None, resp. If the verdicts Fail or Inconc
are assigned, the algorithm already stops without having reached the end of
the trace under consideration. The lemma is proven by pointing out the exit
points of the algorithm and the according assignments of verdicts. 2

Lemma 6.5 (Soundness of verdicts) The assignment of the test verdict to
a test trace by the test execution algorithm (Figure 6) is sound.

(i) In case, that the verdict Fail is assigned, for δ′ = add(δ, sig(Y )) holds:
δ′(θ[X 7→[[Y ]]]) 6∈ [[MSpec]]trace .

(ii) In case, that the verdict Inconc is assigned, for the executed trace δ holds:
δ ∈ [[MSpec]]trace ∧ δ 6∈ [[MTC ]]Pass.

(iii) If the verdict Pass is assigned, the executed trace δ(θ) ∈ [[MSpec]]trace ∧ δ ∈
[[M>>

TC ]]Pass ∧ |β| > 0.

(iv) In case that |β| = 0, None is assigned.

Proof sketch: This lemma is proven by first proving by induction, that
any trace β which does not lead to a Fail verdict is a trace of the original
system. The assignment of the separate verdicts is then shown by analyzing
those points in the algorithm, which lead to the verdict under consideration, as
well as the course of the algorithm from its initialization towards this point.2

7 CEPS Case Study

In this section, we describe the application of our approach to the case study
CEPS (Common Electronic Purse Specifications). These define a protocol for
electronic payment using a chip card as a wallet. The specifications consist of
the functional requirements [6] and the technical specification [7]. A complete
electronic purse system covers three roles: a card user, a card issuer (the
issuing bank institute, for instance) and a card reader as a connection between
these two. The hardware of such a system is given by the purse card itself,
the card reader and some network infrastructure. Software applications are
running on the card (CEPCardApp), on the card reader (CERCardReaderApp)
and at the site of the card issuer (CEPCardIssuerApp), and these applications
are communicating with each other.

In our work on the case study, we aim to evaluate our test generation
process by automatically generating parameterizable test cases for the scenario
described in Figure 7. We start from a formalized version of the technical
specification of the CEPS card application CEPCardApp (Courtesy of the VASY
team at INRIA Rhône-Alpes, cf. [15]), which we simplified by a live-variable-
analysis and realized in µCRL. In this specification, all input variables with an
infinite domain are substituted by >>. The generation process itself is guided
by the test purpose, which describes the scenario, we are focusing on.

The abstracted specification is then parsed and an LTS is generated. The
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card:CEPCardApp reader:CEPCardReaderApp issuer:CEPCardIssuerApp

CepCommand(LOADINIT,-)
CepReply(-,x9000)

Load(-)
RespLoad(-)

CepCommand(LOADCREDIT,-)
CepReply(-,x9000)

Comp(-)

Fig. 7. Interactions in the test purpose scenario

resulting LTS is minimized using strong minimization. We experimented with
two specifications for different scenarios. In the first one, a status variable of
the process was after action CepReply(updateStatus(mSlotInfo,x940A))

updated with value x9409 instead of x940A. In the second specification, the
value x940A was used.

For the first specification, the whole process of LTS generation and min-
imization took 16 minutes and 5.088 seconds on a cluster of five 2.2GHz
AMD Athlon 64 bit single CPU computers with 1 GB RAM each. The
abstracted specification had 3023122 states and 17459807 transitions, which
could be reduced by strong minimization to 1627 states and 5487 transitions.
Finally, two single test cases without loops are generated using TGV, one of
them limited to a maximal depth search for its preamble of 100 steps, the
other one unlimited. Starting with the minimized abstracted system model
and a test purpose of 5 states and 5 transitions, the generated unlimited test
case contained 594 states with 597 transitions. The limited test case con-
tained 108 states with 111 transitions. Test case generation took 0.65 seconds
or 0.42 seconds, resp., on a workstation with one 2.2GHz AMD Athlon XP
32 bit CPU and 1 GB main memory.

For the second specification, whose abstracted version had 168942 states
and 232253 transitions (1619 states and 1899 transitions after strong mini-
mization), the generation of the LTS took 69.418 seconds on the cluster. Test
generation took 3.453 seconds for a test case of 255 states and 286 transitions
(limitation to 100 steps led to identical results as unlimited generation).

Afterwards, a Prolog rule system is derived from the original specification
that consists of the functions in the µCRL specification and of the conditions
and assignments from the summands. This rule system is also reusable like
the IUT model so that it potentially does not have to be regenerated each
time a test oracle is created. The test oracle itself later delivers possible input
and expected output values for the test execution. This oracle sends queries
to the rule system to find out, under which variable settings the implemented
trace can be executed and which values have to be expected from the IUT .
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8 Conclusion and Future Work

In this paper, we proposed an approach to generate test cases combining data
abstraction, enumerative test generation and constraint-solving. Given the
concrete specification of an open system, the presented data abstraction allows
to derive the appropriate abstract system that is finite with respect to data
exchanged with its environment and thus suitable for the automatic generation
of abstract test cases with enumerative tools. To execute the ATCs, we have
to instantiate them with concrete data. For data selection we make use of
constraint-solving techniques: a set of constraints is derived from the system
specification and then solved by a constraint solver. The parameterized test
cases can then be executed. We have proven the correctness of our approach.
To corroborate the applicability of our approach, we applied it to the CEPS
case study [5,6,7].

An interesting aspect, especially from a practical viewpoint, is the gener-
ation of test cases directly from UML specifications, as it has been proposed
in [2,26]. As a future work, we aim to adapt our approach for UML-based
test case generation. Doing so, the target language of test case generation is
TTCN-3 (Testing and Test Control Notation, version 3), a standardized test
specification language, widely accepted by the industrial community [35].
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