
Distributed Analysis with µCRL:
A Compendium of Case Studies?

Stefan Blom2, Jens R. Calamé1, Bert Lisser1, Simona Orzan3, Jun Pang4,
Jaco van de Pol1,3, Mohammad Torabi Dashti1, and Anton J. Wijs1

1 CWI, Amsterdam, The Netherlands
2 Institut für Informatik, Universität Innsbruck, Austria

3 TU/e, Eindhoven, The Netherlands
4 Carl von Ossietzky Universität, Oldenburg, Germany ? ? ?

Abstract. Models in process algebra with abstract data types can be
analysed by state space generation and reduction tools. The µCRL toolset
implements a suite of distributed verification tools for clusters of work-
stations. We illustrate their application to large case studies from a wide
range of application areas, such as functional analysis, scheduling, secu-
rity analysis, test case generation and game solving.

1 Introduction

The µCRL toolset (www.cwi.nl/~mcrl, [2,3]) is equipped with several tools to
analyse models of industrial systems, comparable to CADP [8], Spin [10], Up-
paal [1] and Murφ [7]. Most techniques rely on explicit state space generation.
In order to overcome memory problems of a single machine, we have constructed
distributed implementations of the µCRL tools. With this paper we illustrate
that these distributed analysis tools are essential in a wide range of application
areas. In particular, we discuss applications in functional analysis, scheduling,
test generation, security analysis, and game solving.

Before doing so, we shortly mention the distributed tools, which all run on
a cluster of workstations. First of all, there is the state space generator [11].
Besides generating all possible behaviour of a µCRL-model, it can check for
simple properties, e.g. deadlock freeness. One manager and n clients perform
a distributed breadth-first exploration, where a hash function is used to assign
states to the clients. This exploration is done level by level simultaneously on
all clients, whereby the clients, which have finished their part of the task, com-
municate destination states to the other clients. The manager synchronises the
clients, hence enforcing the breadth-first character of the exploration.

A GUI is provided with the toolset to monitor running jobs. A running job
can be killed at any time, to be restarted later on. Some minimisation tools [4]
reduce a state space modulo strong or branching bisimulation. There is also a

? ? ? Stefan.Blom@uibk.ac.at, {jens.calame,bertl,vdpol,dashti,a.j.wijs}@cwi.nl,
s.m.orzan@tue.nl, jun.pang@informatik.uni-oldenburg.de

? c© Springer-Verlag



distributed SCC contraction tool [12], which eliminates for instance all τ -cycles.
Finally, it is possible to deal with priced reachability problems. We implemented
minimal-cost search (where the search order is determined by the costs associated
with actions), and beam search (which uses heuristics to guide the search) [14,15].
In the latter case, state space generation is not exhaustive.

2 Applications of Distributed Analysis

Functional Analysis – A Cache Coherence Protocol. Jackal is a fine-grained
distributed shared memory implementation of the Java programming language.
It aims to implement Java’s memory model and allows multithreaded programs
to run unmodified on a distributed memory system. It employs a self-invalidation
based, multiple-writer cache coherence protocol, which allows processors to cache
a region created on another processor.

A µCRL specification of the protocol was extracted from an informal (C-
like language) description. It contains parallel processes for components such as
threads, processors, buffers, and regions. These components interact with each
other via message communications. Our analysis [13] has revealed two unan-
ticipated errors in the implementation, which were confirmed and corrected by
the developers of Jackal. The µCRL distributed state space generation tool has
played a central role for this case study. It was used to generate state spaces for
several large instances of the protocol. One of the two errors found by analysing
them with CADP can only be detected on these instances.

Test Case Generation – Common Electronic Purse Specifications. The Common
Electronic Purse Specifications (CEPS) define a protocol for electronic payment
using a chip card as a wallet. A complete electronic purse system covers three
roles: A card user, a card issuer (e.g. bank institute) and a card reader as a
connection between these two.

We generated parameterisable test cases from a µCRL model of the card
application as follows [5]: We first applied a so-called chaos abstraction to limit
the infinite behaviour due to unbounded input values. However, even the ab-
stracted version was very large. The full state space was generated on a cluster
of machines, while the minimised state space fitted in one machine. Finally, we
applied enumerative test generation with the (sequential) tool TGV.

Scheduling – Clinical Chemical Analyser. Opposed to more traditional qualita-
tive model checking, where properties are checked resulting in a “yes” or “no”
answer, in quantitative model checking, measurements are performed on a model.
Scheduling problems can be seen as priced reachability problems, where costs
are associated with actions (and states), and the goal is to find a successful
termination in a state space where the traces represent all possible schedules.

We used µCRL to model the scheduling problem of a Clinical Chemical
Analyser [15], which is used to automatically analyse patient samples, designed
by TNO Industry and TU/e. As naïve breadth-first search could not cope with
costs and large problem instances, we developed a set of distributed techniques,

2



incorporating minimal-cost search and several pruning techniques [14], building
on the traditional notion of beam search. We were able to find solutions for
several problem instances on-the-fly.

Security Analysis – Digital Rights Management. Digital Rights Management
(DRM) schemes have recently attracted much research because of their essential
role in enabling digital business in the entertainment market. However, sobering
experiences, such as the recent Sony-BMG case, have shown that DRM systems
are inherently complicated, hence error-prone, and if not applied with ample
scrutiny and analysis can infringe on both vendors’ and customers’ rights. We
extended an existing concept of DRM-preserving content redistribution in [9],
where users double as content distributors.

We used µCRL to formally specify a finite model of this scheme. The result-
ing system is highly non-deterministic, mainly due to several fall back scenarios
for suffered parties. Particularly when an intruder is included in the model, it
easily hits the boundaries of single-machine state space generation. We therefore
resorted to the distributed setting for generating and minimising the correspond-
ing state space, to later on model check security goals of the scheme.

Game solving - Sokoban. A rather surprising application of our verification tech-
niques is in solving instances of the one-player maze puzzles of Sokoban. Squares
of a Sokoban instance may be occupied by stones, or marked as targets. A person
can walk around or push stones, in order to move them all to the target squares,
minimising the number of pushes. Walking steps are not counted.

To solve a screen, we generate its state space, and look for the shortest
number of pushes leading to the goal state. However, as walk steps don’t count,
they should be eliminated first. Due to the large number of move options at every
step, for most instances the state spaces could only be generated on a cluster
of workstations. By hiding the walking actions, we get a state space with many
τ -cycles, on which the distributed SCC elimination tool [12] was applied, and led
to a significant reduction. In the reduced state space we can simply count the
pushes in the shortest path to the success state.

3 Evaluation and Conclusion

The µCRL toolset has the capabilities to do distributed analysis on a cluster
of computers. In a number of experiments we successfully applied the toolset to
the areas, which have been described in the previous section. Thereby, the case
studies we worked on, led to large state spaces.

In general, we used a cluster of 2.2GHz AMD Athlon 64 bit single CPU
computers with 1 GB RAM each and SuSE Linux 9.3 installed. In those cases,
where the number of machines is given as n+1, we used a cluster of 1.4GHz
AMD Opteron 64 bit computers running under Debian 3.1. The first n machines
had two CPUs and 2 GB RAM each while the extra machine had four CPUs
and 16 GB main memory. As can be seen in Table 1, most problems could not
have been solved on a single machine, because computation would have taken

3



Table 1. Performance Results

Case Study States Transitions Machine(s) Time (hours)
Functional Analysis 97,451,014 1,061,619,779 31 02:38:26
after minimisation 3,634,036 39,603,188 1 n/a
Test Generation 3,023,121 17,475,646 5 00:09:26
after minimisation 1,626 5,487 1 00:07:32
Scheduling 341,704,322 n/a 16 n/a
with beam search 7,408 n/a 1 00:00:08
Security Analysis 28,206,430 114,824,743 8+1 16:04:16
after minimisation 1,979 36,667 1 00:07:44
Game Solving 29,933,087 72,309,227 9+1 00:51:54
after τ -cycle elimination 2,583,703 7,167,175 10 00:02:01

too long and would have consumed too much memory. Therefore, problems of
this size can only be solved by a toolset supporting distributed analysis features.

References

1. G. Behrmann, T. Hune, and F.W. Vaandrager. Distributing Timed Model Check-
ing - How the Search Order Matters. In Proc. CAV’00, volume 1855 of LNCS,
pages 216–231, 2000.

2. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C.
van de Pol. µCRL: A Toolset for Analysing Algebraic Specifications. In Proc.
CAV’01, volume 2102 of LNCS, pages 250–254, 2001.

3. S.C.C. Blom, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de Pol. New
developments around the µCRL tool set. ENTCS, 80, 2003.

4. S.C.C. Blom and S.M. Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. STTT, 7(1):74–86, 2005.

5. J.R. Calamé, N. Ioustinova, and J.C. van de Pol. Towards Automatic Generation
of Parameterized Test Cases from Abstractions. Technical Report SEN-E0602,
CWI, March 2006.

6. T. Chothia, S.M. Orzan, J. Pang, and M. Torabi Dashti. A framework for auto-
matically checking anonymity with µCRL. In Proc. TGC’06, LNCS, 2007.

7. D. Dill. The Murφ Verification System. In Proc. CAV’96, volume 1102 of LNCS,
pages 390–393, 1996.

8. H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Joubert et
al. DISTRIBUTOR and BCG_MERGE: Tools for Distr. Explicit State Space
Generation. In TACAS’06, volume 3920 of LNCS, pages 445–449, 2006.

9. H. Jonker, S. Krishnan Nair, and M. Torabi Dashti. Nuovo DRM paradiso. Tech-
nical Report SEN-R0602, CWI, Amsterdam, 2006.

10. F. Lerda and R. Sista. Distributed-Memory model checking with SPIN. In Proc.
SPIN’99, volume 1680 of LNCS, pages 22–39, 1999.

11. B. Lisser. Distributed State Space Generator (preliminary). http://www.cwi.nl/
~mcrl/instantiators.pdf, 2006.

12. S.M. Orzan and J.C. van de Pol. Detecting strongly connected components in large
distributed state spaces. Technical Report SEN-E0501, CWI, 2005.

4



13. J. Pang, W. J. Fokkink, R. F.H. Hofman, and R. Veldema. Model checking a cache
coherence protocol of a Java DSM implementation. JLAP, 71:1–43, 2007.

14. A.J. Wijs and B. Lisser. Distributed Extended Beam Search for Quantitative
Model Checking. In MoChArt’06, LNAI, 2007.

15. A.J. Wijs, J.C. van de Pol, and E. Bortnik. Solving Scheduling Problems by
Untimed Model Checking. In Proc. FMICS ’05, pages 54–61. ACM Press, 2005.

A Appendix

Security Analysis - Anonymity. Anonymity is a non-standard security property,
in the sense that it is not verifiable by model checking directly, but requires
special techniques, where state space minimisation is essential [6].

The powerful distributed state space generation and minimisation tools of the
µCRL toolset allowed us to automatically check anonymity for large instances of
known protocols. For instance, the Dining Cryptographers protocol, used as case
study for many tools, has so far been verified for a maximum of 8 participants. We
succeed in verifying it for 15 participants in a few hours. Moreover, the anonymity
property of the FOO voting protocol has never before been established in an
automatic framework. Our toolset supports its verification for up to 7 voters.

For this second security analysis case study, we generated a state space of
65,282,690 states and 221,299,564 transitions. It could then be minimised to
3,676,249 states and 9,628,686 transitions. On a cluster with 16 machines as
described in Section 3, this took us 4 hours and 48 minutes.

The Toolset in Action. The toolset described in the paper is used on a regular
basis in the area of computer science research. The toolset is available in open
source from the website http://www.cwi.nl/~mcrl/tacas2007/.

The presentation of the toolset is planned as follows: First, we will give an
introduction to the toolset in general before discussing its technical aspects.
These aspects will be shown by an exemplary execution of the beam search
example. This execution will be given as an animation as follows:

1. Starting a job on the cluster (Figure 1).
2. Starting the tool contact, a monitoring GUI for the toolset.
3. Discussion of the different states of job execution: idle (color white), busy

(color red, see Figure 2), communicating (color yellow, see Figure 3) and
finished (color green, ibid).

4. Interpretation of the results (showing output files, e.g. the state space direc-
tory, and explaining their meaning).

Afterwards, we will give a short introduction into each of the given case
studies. This introduction will contain some information about the case study
itself and about the results we achieved in the experiments.

5



Fig. 1. Starting a job

Fig. 2. All processors calculating

6



Fig. 3. Some processors communicating

7


