
TTCN-3 Testing of Hoorn-Kersenboogerd Railway Interlocking

Jens R. Calamé
CWI, Amsterdam
The Netherlands

e-mail: jens.calame@cwi.nl

Nicolae Goga
Technical University Eindhoven,

Eindhoven
The Netherlands

e-mail: n.goga@tue.nl

Natalia Ioustinova, Jaco van de Pol
CWI, Amsterdam
The Netherlands

e-mail: {ustin,vdpol}@cwi.nl

Abstract

Railway control systems are safety-critical, so we have to ensure that
they are designed and implemented correctly. Testing these systems is

a key issue. Prior to system testing, the software of a railway control

system is tested separately from the hardware. The interlocking is

a layer of railway control systems that guarantees safety. It allows
to execute commands given by a user only if they are safe; unsafe

commands are rejected.

Railway interlockings are central to efficient and safe traffic man-

agement for railway infrastructure managers and operators. Euro-
pean integration requires new standards for specification and testing

interlockings. Here we propose an approach to testing interlockings

with TTCN-3 and give an example for its application.

The code of interlockings is simulated during test execution. For
assessing the quality of the tests, we propose an approach inspired by

the Classification Tree Method.

Keywords— Railway interlocking, TTCN-3, test coverage

1 Introduction

Railway control systems, and here especially interlock-
ings, are safety-critical. For this reason, testing is a key
issue to ensure the correctness of their design and imple-
mentation. A special point about testing these systems is,
that the software is tested separately from the hardware in
a simulated environment.

Railway interlockings are central to efficient and safe traf-
fic management for railway infrastructure managers and op-
erators [6] and new standards for the specification and test
of these interlockings are required by the European inte-
gration. In this paper, we propose an approach to testing
interlockings with TTCN-3. Together with engineers from
ProRail, a Dutch railway management company, we have
applied this approach to testing the interlocking of the train
station Hoorn-Kersenboogerd in North-Holland.

Starting from the general requirements for safety, reliabil-
ity, maintainability etc. (CENELEC standards EN 50126,
50128, 50129) for railway control systems, we have devel-
oped a test suite for testing the interlocking of Hoorn-
Kersenboogerd station. The standard requirements are for-
mulated for a station with a general configuration. All
requirements are of the form: initial situation, action,
expected results. To develop test cases for the Hoorn-
Kersenboogerd station, we had to (1) map the general con-
figuration to a particular configuration of the station; (2)
map the initial situation to the stimuli for the system under
test (SUT); (3) map the final situation to the output values

This research is supported by the ITEA project Test and Testing
Methodologies for Advanced Languages (TT-Medal, [10])

expected from the SUT; (4) define default values for objects
of the station that are not involved in the tested situation
but still can influence it; (5) formulate time requirements
for tested actions. We specified the test cases in TTCN-3,
which is a language for specification and automated execu-
tion of test suites. The language, its operational semantics,
the general structure and interfaces of a TTCN-3 test sys-
tem are standardized by ETSI [5]. Originally developed for
testing telecommunication system, TTCN-3 supports real-
time testing. A TTCN-3 test executable has predefined
standard interfaces that allow to offer TTCN-3 solutions
that do not depend on the implementation details of an
SUT. In the TT-Medal project [10], we applied TTCN-3 to
testing railway interlockings.

The software part of a railway interlocking is a program
that consists of a large number of guarded assignments.
The program defines a control cycle that is repeated by the
system. The length of the control cycle is fixed by design.
Although the environment of the system changes continu-
ously, the system only sees snapshots of the environment
made at the beginning of each control cycle. Thus the en-
vironment is discrete from the system’s point of view. The
system is timed, delays are used to guarantee safety.

We test the interlocking’s software without the corre-
sponding hardware by simulating the code of the interlock-
ing during the test execution. To ensure repeatability of
testing results, we need to establish control over time in
the SUT and in the test system. We have to guarantee
that the SUT and the test system agree on time. We pro-
pose a solution with simulated time where time is modeled
as a discrete clock. Since TTCN-3 was originally developed
for real time testing, we have to make extra efforts to im-
plement simulated time in the TTCN-3 framework. Our
solution for testing with simulated time [3] is based on an
extension of Dijkstra’s well-known algorithm for distributed
termination detection [4].

Applying our approach to testing the interlocking of
Hoorn-Kersenboogerd station, we cover the whole test-
process starting from the development of test cases, pro-
ceeding with the implementation of the test system, and
finally with the automated execution of tests and the inter-
pretation of results. The approach allows detecting viola-
tions of safety requirements in interlocking software. The
solution for testing with simulated time in TTCN-3 is also
applicable to other systems with similar characteristics. To
assess the quality of the test suite, we propose an approach
inspired by the Classification Tree Method (CTM [8]).



2 Vital Processor Interlockings

In this section, we first outline the general railway con-
trol system architecture. Then, we describe in more details
one of the layers of the architecture, Vital Processor Inter-
locking (VPI) layer.

Railway control systems consist of three layers, the lo-
gistic, the interlocking and the infrastructure layer. The
infrastructure layer represents a railway yard that is a col-
lection of objects such as railway tracks supplied with sig-
nals, points and level crossings, the logistic layer provides
the user-interface for experts in the railway control center.
The interlocking layer connects both and is responsible for
the safety of the whole system, i.e. it ensures that no train
derailments or collisions happen. All commands between
logistic and infrastructure are intercepted by the interlock-
ing. The VPI checks whether it is safe to execute commands
and rejects or suspends unsafe ones.

A VPI is a machine that executes hardware checks and
executes a program. This program consists of a number
of guarded assignments and specifies a control cycle that
is repeated with a fixed frequency by the hardware. The
program operates on three kinds of variables: read-only
inputs, auxiliary variables for computations and writable
output variables. Within one cycle, the input is read and
some calculations on it are done. Shortly before the end of
the time slice, the outputs are written and thus accessible
by the infrastructure and logistic. Reading, calculating and
writing belong to the active phase of the program, while
there is an idle phase between calculation and output. A
VPI is a timed system and a lot of safety requirements for
it are timed. They often describe dependencies between
objects of the infrastructure in time, like “when freed a
train track should not become occupied for 120 seconds”.
The time requirements are specified using delays.

The requirements are defined as scenarios, derived by
ProRail and their third party manufacturers following the
guidelines in the CENELEC standards (EN 50126, 50128
and 50129). These scenarios have a common structure, de-
scribing an initial situation, an action and the expected
results. A scenario is not limited to one such description,
but can consist of a sequence of situations with actions and
results.

For example, the scenario Cancel Yellow describes the
procedure to establish a route over certain segments in the
station by setting a signal to yellow and afterwards setting

1 3 5 7 9 11

8 10

2 4 6

1 3 5 7 9 11

8 10

R

2 4

Y

6

G

Figure 1: Cancel Yellow Station-independent setup

66C 66B 66A 74B

74A
69A 73B

52D 62A 62B 62C
70A 69B 73A

70B 70C

Road
Platform 1

Platform 2

60

62

68

64

74

72

Figure 2: Configuration of station Hoorn-Kersenboogerd

this signal to red. The scenario is defined for an abstract
railway yard consisting of six track segments (1,3,5,7,9,11)
and 5 signals (2,4,6,8,10; see Figure 1). Below, we describe
the scenario in more detail:

No. Initial situation Action Expected result

1. Rest: No route
has been set and
there is no train.

Establish
route 4 to
6.

The route from
signals 4 to 6 is
locked and sig-
nal 4 becomes
yellow.

2. Continuation Cancel
signal 4.

Signal 4 be-
comes red and
the route is
released without
delay.

Note that only signals 2, 4 and 6 are influenced by this
scenario. Further we provide a mapping from this general
scenario for an infrastructure to a concrete scenario for our
case study. Based on this mapping we then describe the
case study itself.

3 Case Study for Hoorn-Kersenboogerd

The goal of the case study is to evaluate the applicability
of TTCN-3 for testing VPIs. Here we apply TTCN-3 to test
the VPI of the Hoorn-Kersenboogerd station. We first map
selected scenarios for a general infrastructure to concrete
scenarios for Hoorn-Kersenboogerd. Then we proceed with
translating the concrete scenarios into TTCN-3 test cases,
developing a TTCN-3 test system for testing the VPI and
finally with executing the test cases and analyzing the test
results. We illustrate this process for the Cancel Yellow
scenario mentioned in the previous section.

Hoorn-Kersenboogerd is a railway station in the Nether-
lands. Its railway yard consists of two railways, one at each
of the platforms, which are interconnected in both direc-
tions of traffic. Furthermore, both railways are crossed by
a road. From the safety viewpoint, this situation requires
the management of six signals in the area of the station,
three signals per railway track.

The railway tracks at the station are subdivided into
seven or nine segments, resp. Each of these segments is
either in normal position, if there is no train passing this
section, or in reverse position, if it is occupied by a train.



Depending on this information, the signals are set to stop
(red light), slow ride (yellow light) or ride (green light).

We have selected three of the scenarios provided by
ProRail, which were potentially applicable to Hoorn-
Kersenboogerd: Cancel Yellow, Normal Route and Normal
Train Depart. The scenario Cancel Yellow, which describes
the procedure to establish a route over certain segments at
the station by setting a signal to yellow and afterwards set-
ting this signal to red, is discussed in further detail in this
section.

To implement the test cases for this scenario regarding
Hoorn-Kersenboogerd, we first map the affected tracks as
well as the signals from the general scenario to the con-
ditions at Hoorn-Kersenboogerd. The situation is high-
lighted in Figure 2 by selecting the railway track segments
66A/B/C and 74A/B and signals 60, 68 and 64. We pro-
vide the following mapping: the signals 4, 6 and 10 of the
general scenario (Figure 1) are mapped to the signals 60,
68 and 64, and the segments 5, 7, 9, and 11 of the general
scenario are mapped to the segments 66C, 66B/A, 74B and
74A of Hoorn-Kersenboogerd.

As the next step, we build a TTCN-3 test case reflect-
ing the scenario. Its initial situation is mapped to corre-
sponding values of input variables of the VPI program rep-
resenting objects involved in the scenario. The expected
situations are handled analogously and mapped to the val-
ues of the output variables of the VPI. The test case re-
flects the control cycle of the VPI: The general pattern is
to send input values to the VPI, wait for the outputs and
check whether the obtained outputs match the expected
ones. Outputs not only depend on values of inputs but also
on time. Some inputs have to remain the same for a certain
time span in order to change the corresponding output val-
ues. Therefore, the test case takes several control cycles in
order to reach the expected situation starting from the ini-
tial one. For instance the TTCN-3 test case implementing
Cancel Yellow lasts for six cycles.

Since we cannot utilize the VPI hardware, we have to
simulate the VPI in order to test it. Developing a sim-
ulator for one case study is too expensive. Therefore we
provide a automatic translation of the VPI program into
a specification in µCRL [2] for which we already have a
simulator. The translation preserves all the behaviors of
the VPI program. µCRL is a process algebraic language
for specifying large distributed systems. In this language,
recursive processes are specified, which invoke actions with
data parameters. The invocation of actions can optionally
be guarded by conditions.

To execute test cases, we developed a TTCN-3 test sys-
tem. Time also led to another problem in test case im-
plementation. Real-time execution of test cases was not
possible due to the fact that the software for the railway
interlocking is tested apart from its hardware. We discov-
ered that real-time or scaled-time semantics were not effi-
cient enough to be applied to this task, so we developed the
approach of simulated time [3]. Technically, this approach

introduces some components in the test system, which syn-
chronizes the progress of simulated time during the test
for all participating components. Therefore, not only time
progression steps must be implemented, but also system
idleness must be communicated to the additional timing
components. This must be taken care of during test case
implementation.

As a test execution engine we used the TTCN-3 tool
TTworkbench [1] that runs the TTCN-3 test cases and
communicates with the SUT via the test adapters, which
we have implemented. Independently from each other, Pro-
Rail and we were able to find the same failure in the Normal
Train Depart scenario. In the scenario, a signal should stay
yellow at a certain point, but actually turned to green af-
ter one cycle. Previous works on verification of the VPI [9]
have missed this failure. Since ProRail had found the fail-
ure as well, the actual VPI program running at Hoorn-
Kersenboogerd does not contain it.

4 Testing coverage

For the computation of the coverage of a test suite we em-
ploy a methodology inspired by CTM [8]. CTM is usually
used for the selection of test data, by defining equivalence
classes for the data and using a uniformity hypothesis [7]:
picking few representatives for a class is sufficient to check
the whole equivalence class. This methodology naturally
leads to a notion of a test coverage based on the percentage
of equivalence classes that are checked by a test suite. We
adapted a comparable methodology for our case study.

If the behavior of a VPI is specified in a formal language,
formal methods can be used to check, which of the situ-
ations in infrastructure are reachable and which of them
are impossible. However, we had no specification provided
therefore we had to rely on the knowledge of experts in
order to decide which situations in the infrastructure are
possible and mapped them into combinations of inputs of
VPI. This set of possible input combinations we further
consider as the basis for calculating coverage of our test
suite. Together with information about the points in time,
in which several inputs are fed into the SUT, we can derive
the number of possible traces through the system. The cov-
erage is then the percentage of traces, which have actually
been executed by the test suite.

Our methodology can be described as follows: Given a
particular railway yard, we calculate (using experts’ knowl-
edge) all possible combinations of traces through the SUT,
induced by the yard’s objects’ states together with possible
inputs from logistic and their order. Further we refer to
the number of these combinations as M . During test exe-
cution, we keep track of the traces covered by a particular
test suite, referred to as n. The coverage provided a test
suite TS is then computed using the formula

covTS (n,M ) =
n

M
.

For our case study there are in total 80 possible combi-
nations, from which we had checked, after performing three



test cases, 10. The coverage is

cov(10 , 80 ) =
10

80
= 0 .125 = 12 .5% .

In our experiments, we observed that the coverage re-
spects a natural property of the testing coverage, respec-
tively the monotonic property by increasing after perform-
ing more tests. It can be also noted that many other com-
binations that are not checked by our test suite can easily
be verified by arranging in a suitable way the inputs such
that the desired combinations of inputs and input orders
will occur. In this way the testing coverage can be easily
increased.

A possible combination of inputs and timers corresponds
to a set of behaviors. For example if a possible combina-
tion contains two inputs that are both 1, there will be at
least three behaviors that can model that situation: one in
which both inputs are 1 in the same time and two in which
the value 1 of an input will precede in time the other value
1 of another input. The proposed coverage considers that
checking at least one behavior from the correspondent set of
behaviors will be sufficient to check all the behaviors from
the set (consequently, the correspondent possible combina-
tion is also checked). This uniformity hypothesis is quite
strong but makes the computations simple. For differenti-
ating between different behaviors within the correspondent
set, more sophisticated techniques for the computation of
the coverage needs to be employed, such as test coverage
and selection based on distances [7], but this is an option
for further research.

5 Conclusion

In this paper, we proposed an approach to test railway
control systems, in particular railway interlockings, with
TTCN-3. We outlined the scenario mapping for our case
study Hoorn-Kersenboogerd and discussed the results of
the test experiment. Particularly timing was a non-trivial
issue, since we could not test the railway interlocking in
its original environment, but only in a simulated one. For
this reason, time also had to be simulated, which formed a
special challenge in this work.

Finally, we discussed how the test coverage for a rail-
way interlocking test can be obtained to achieve an optimal
selection of input values and timing them. The coverage
measurement itself is based on the idea of CTM, while the
actual selection of optimal test data values and timings is
object of further research.

We showed that TTCN-3 can potentially be used as a
standard language to specify test suites for railway appli-
cations. It is suitable to provide reusable platform inde-
pendent test suites for railway interlockings. Clear seman-
tics and high maintainability of TTCN-3 allow not only
to provide high-quality test suites but also to reduce costs
for testing and maintenance of test systems on the long
run. This work was done within TT-Medal project (Test
and Testing Methodologies for advanced languages) where

TTCN-3 was also applied by a team of Daimler Chrysler
to test automotive systems and by teams from NetHawk,
Nokia and VTT to test modern telecommunication sys-
tems. More information about TTCN-3 and using it for var-
ious domains is available on the TT-Medal web-page [10].
We thank Fraunhofer FOKUS and Testing Technologies
(www.testingtech.de) for providing us with TTCN-3 tools
and support on TTCN-3.

References

[1] Testing Technologies. www.testingtech.de.
[2] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van

Langeveld, B. Lisser, and J.C. van de Pol. µCRL:
a Toolset for Analysing Algebraic Specifications. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. of
the 13th Conference on Computer Aided Verification
(CAV’01), pages 250–254. Springer-Verlag, 2001.

[3] S.C.C. Blom, N. Ioustinova, J.C. van de Pol, A. Ren-
noch, and N. Sidorova. Simulated Time for Test-
ing Railway Interlockings with TTCN-3. In Proc. of
5th International Workshop on Formal Approaches to
Testing of Software (FATES 2005), Lecture Notes in
Computer Science, 2005.

[4] E.W. Dijkstra, W.H.J. Feijen, and A.J.M. van
Gasteren. Derivation of a Termination Detection Al-
gorithm for Distributed Computations. Information
Processing Letters, 16(5):217–219, June 1983.

[5] ETSI. Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Parts 1 to 6. ETSI ES 201 873, www.etsi.org.

[6] European Standards for Railways Interlocking Sys-
tems. www.euro-interlocking.org.

[7] N. Goga. Control and Selection Techniques for the
Automated Testing of Reactive Systems. PhD thesis,
Technical University of Eindhoven, 2004.

[8] M. Grochtmann and K. Grimm. Classification Trees
for Partition Testing. Software Testing, Verification
and Reliability, 3(2):63–82, 1993.

[9] J.F. Groote, J.W.C. Koorn, and S.F.M. van Vlijmen.
The Safety Guaranteeing System at Station Hoorn-
Kersenboogerd. In Proc. 10th Annual Conference on
Computer Assurance (COMPASS’95), pages 57–68,
1995.

[10] Test and Testing Methodologies for Advanced Lan-
guages (TT-Medal). www.tt-medal.org.


