
Towards a Software Test Process Framework

Jens R. Calamé
CWI, P.O.Box 94079, 1090 GB Amsterdam

jens.calame@cwi.nl

Erika Horn
Univ. Potsdam, P.O.Box 900327, 14439 Potsdam

ehorn@soft.cs.uni-potsdam.de

Abstract

Testing modern software-intensive systems is a complex process that often
lacks proper means for management and documentation. In this paper, we pro-
pose an approach to specifying and documenting a test process framework that
facilitates automatization of testing processes. The approach bridges the gap be-
tween product requirements, software under test, and the actual testware. It also
allows to specify stages of a specific test process. We use Meta Object Facility-
based meta models as the specification basis for our approach. Furthermore, we
provide an application of the approach to testing connector-based multi agent
systems.

1 Introduction

In a software test process, the implementation of a software is validated with regard to
its model. In order to do so, the test is planned and test cases are developed which focus
on certain properties of the software model. These test cases stimulate the software
components under consideration (system under test, SUT) and assert the results. A
problematic aspect of software testing is the complexity of the software test process.

In this process, many documents, e.g. software models, and software components are
involved. These documents have a certain structure and they build up a complex web
of relationships. In these relationships, every document or software component plays a
certain role. The relationships and roles form the static aspects of the process, which
is difficult to overview and to understand. Thus, they must be modeled consistently, so
that testing engineers are able to keep track of documents and software components over
the test process.

Furthermore, the test of software must not happen randomly, but has to be repeatable
to ensure the quality of test results. This means, that a test engineer has to perform the
same actions on the same objects over and over again. This is necessary to ensure that
a failure in a software component is not found once by chance, but can be found again,
if it has for instance not been corrected in a new version of the same component. To
assure repeatability, the model of static aspects has to be supported by the description of

1



actions on the elements of this model. These are the dynamical aspects of the software
test process.

Finally, the implementation of software testing requires a good knowledge manage-
ment. This is a crucial aspect for the test process, since it has to be documented for
the customer and also internally, for instance to be able to repeat the process. Another
factor, which requires a good knowledge management, is the introduction of new mem-
bers into a particular project or the training of new employees on a company-wide project
scheme.

In this paper, we introduce a test process framework to support the recommended
structurization of test processes. In this framework, we model the static and dynamical
aspects of such a process.

The test process framework is modeled with meta models, which are based on Meta
Object Facilities (MOFs, [9]), and with patterns. MOFs are a framework for the definition
of meta models using the means of description of the Unified Modeling Language (UML,
[11]). The meta models can be instantiated to the models of concrete test processes.
These models can then be used to perform such a process (process instance).

With the means of MOF-based meta models, we describe three stages of a test
process focusing on the static aspects. The stages form combinations of the test phases
as they are defined in the ANSI/IEEE standard 829 [8]. The three stages cover the
definition of models, their implementation and the test execution. With this tripartition,
our process framework supports software tests in a software development process based
on the Model-Driven Architecture (MDA, [10]). Dynamical aspects for each of the stages
can be described by patterns.

In this paper, we work out the meta models of the test process framework and
apply them to the design of a framework of test components for multi agent systems
(MAS). The paper is organized as follows: The meta models of the process framework
are discussed in section 2. In section 3, we describe the application of our test process
framework to a case study from the domain of MAS. Therefore, we describe the type of
MAS, which we have taken as a case study. Then we show the design of a class library
to support the implementation of test cases for MAS as an exemplary application of the
defined meta models. We conclude with section 4.

2 Meta Models for the Test Process Framework

In this section, we describe the meta models for the test process framework. We will first
introduce an ANSI/IEEE standard for software processes. Then, we give an overview of
the MDA, before we combine both concepts to the test process framework, which we
propose in this paper.

A software test process consists of several phases. The ANSI/IEEE Standard 829
[8], for instance, proposes the following sequence of phases: test planning, test design,
test case specification, test procedure implementation, test setup, test execution and
test analysis. In the test planning phase, the aspects are defined, which the test process
is founded on: the scope of the test, the approach to be taken, the project resources,
which have to be assigned to testing, and finally the test schedule. In the test design, the
test approach is worked out and coverage criteria are defined. The test case specification
finally defines the behavior of the single test cases. These test cases are then implemented

2



«stage»
DefinitionStage

«stage»
ImplementationStage

«stage»
ExecutionStage

SoftwareTestProcess

define prepare

Figure 1: The structure of the test process framework

and, after the setup of the test environment, executed. The outcome of test execution
is a set of test results, which are analyzed in the test analysis phase.

The MDA [10] is an approach to develop software systems with a systematical basis
on models throughout all project phases. Therefore, several abstraction levels for models
have been defined. Three of these levels are of interest for our test process framework:
the Platform-Independent Model (PIM), the Platform-Specific Model (PSM) and the
Code level. A PIM defines a software system on a level of abstraction, which makes it
independent from the platform, which the system is later implemented on. This platform-
dependency is introduced in the PSM and finally realized as an implementation of the
software system as code.

In this paper, we combine the ideas of both existing standards for software test
processes and the MDA in a test process framework. Therefore, we introduce the term
stage, which describes a combination of standardized test phases and corresponding soft-
ware models according to the MDA. Considering test phases strongly following IEEE 829
has the disadvantage that model elements, which contextually belong together, can be
spread over several such phases. To avoid this, our stages form combinations of test
phases. Furthermore, we only want to focus on software in this paper, so we do not
model any hardware aspects into the process framework. Thus, we define the following
three stages: (1) Definition Stage, (2) Implementation Stage and (3) Execution Stage.

The Definition Stage covers planning, design and test case specification phases of
the test process following the ANSI/IEEE standard. From the viewpoint of MDA, we can
find – clearly separated from each other – the PIMs (business process definitions) and
PSMs (component definitions) of both the system under test (SUT) and the testware in
this stage. The term testware covers all documents (specification documents as well as
actual software), which are developed to test a certain product. The SUT is the product
which is tested.

The Implementation Stage covers the implementation phase of the standardized test
process and that part of the test setup, which has to be implemented into the testware.
From the viewpoint of MDA, this stage covers the code level.

Finally, the Execution Stage covers the test execution phase of the standard. Fur-
thermore, it covers those parts of the test setup, which are related to the deployment
of software components in a test environment. The Execution Stage prepares the test
analysis phase by collecting the test results in a test protocol.

The complete test process framework with its three stages is depicted in figure 1.
In our approach, each stage is described by one meta model with a consistent modu-

3



lar structure. The core is a package TestingSystem which contains the whole test-
ware produced in that particular stage. This package imports both the SUT in a
package SystemUnderTest and basic test libraries or tools contained in a package
TestFramework. The packages SystemUnderTest and TestingSystem form the test
environment and together with the package TestFramework the test infrastructure. In
the following, we describe the stages in more detail.

SystemUnderTestModel

ComponentDefinition

UseCaseModel

realize

realize

SystemUnderTest

TestModel

1
*

TestingSystem

OperationDefinition

ContractDefinition

Pre Post Invariant

TestFramework

MethodInvariant

ActivityModel

de
co

mp
os

e

relate

InternalOpDefExternalOpDef

Interface Class
provide

derive

de
riv

e

TestPlan

TestStrategy

FaultModel
TestCaseDefinition

InputData
ControlBehavior ExpectedOutput

TestTool

Generator TestOracle

de
riv

e

de
riv

e

de
riv

e

realize

TestCaseGenerator TestDataGenerator

ge
ne

rat
ed

_b
y

se
lec

ted
_b

y

ca
lcu

lat
ed

_b
y

an
aly

ze

DefinitionStage

Figure 2: The Definition Stage

4



2.1 Definition Stage

In the Definition Stage, the PIMs and PSMs of both the SUT and the testing system are
specified. The detailed refinement of this stage is given in figure 2. The meta classes of
this stage make it possible, to describe the conceptual level of testing.

In the package SystemUnderTest, we provide elements for the description of the
PIMs defining the SUT (the business models given as classes UseCaseModel and Activi-
tyModel) and for a detailed description of the SUT’s PSMs (SystemUnderTestModel
and the related classes).

The package TestingSystem provides elements to describe test models. Here, we
distinguish between different parts of the model. On the one hand, there are documents,
which cover strategic decisions, represented by the classes FaultModel, TestStrategy
and TestPlan; they can partially be considered as the PIMs of the testing system. On
the other hand, we have those parts, which model the test cases to be applied to the
SUT. The latter ones are represented here by the class TestModel and its related classes
and can be considered as the testing system’s PSMs.

In the package TestFramework, we leave the purely conceptual level of test modeling.
With the elements of this package, a toolset can be described, which works on the
modeling elements of both other packages. Given sufficiently formal models of the SUT,
such a toolset can generate test cases automatically or derive useful test data from the
SUT specification. In our work on the development of a test framework for multi agent
systems, we have used informal models, so that automatic test case generation was not
applicable.

2.2 Implementation Stage

By automatic generation of code or by manual implementation from the models of the
Definition Stage, the Implementation Stage is entered. The meta model of this stage is
given in figure 3.

In the package SystemUnderTest, all meta classes defining operations are taken
directly from the previous stage. The meta class TestObjectImpl is the implementation
of the ComponentDefinition from that stage, while class-internal attributes are newly
introduced during implementation.

The interface Instrumentation has been introduced in this stage to allow access to
internals of the test object, which can be internal operations (test object manipulation)
or attributes (test object monitoring). This can be neccesary for a whitebox test, but is
not allowed for blackbox testing. The instrumentation can be generated by tools or be
implemented manually on the transition from the Definition Stage to the Implementation
Stage.

The core component of the package TestingSystem is the test execution unit (class
TestExecutionUnitImpl), which is either a test case implementation or a complete
test suite. The meta class TestCaseImpl corresponds to TestCaseDefinition of
the previous stage. A test case implementation consists of one or more test operation
implementations, which realize the control behavior of the Definition Stage together
with the input data and expected results. A test operation stimulates the test object and
compares results coming from this object to expected results.

This comparison happens, for instance, with the help of comparators as they are

5



defined in the package TestFramework. A comparator is a prefabricated operation or
a class, which provides the functionality to check, whether certain expectations (e.g.
the equality of a result and and expected value) are met, and to set an appropriate test
verdict (like test passed or failed, resp.). Examples for comparators are the assert...()
functions provided by unit testing frameworks like JUnit [2].

TestCaseImplTestOperationImpl

1*

TearDownOperation

1
1

TestObjectImpl

SetUpOperation

1
1

TestExecutionUnitImpl TestSuiteImpl

tid
ied

_u
p_

by

Ini
tia

liz
ez

_b
y

SystemUnderTest

TestingSystem

Comparator

TestFrameworkImpl

1
*

inv
ok

e

TestFramework

InternalOpImpl

AttributeDefinition

OperationImpl

ExternalOpImpl

tes
t_i

nd
ire

ctl
y

tes
t_d

ire
ctl
y

SystemUnderTestImpl

provide_access

ImplementationStage

«interface»
Instrumentation

«interface»
Interface

provide_access

Figure 3: The Implementation Stage

2.3 Execution Stage

By compiling and deploying the components, which have been implemented in the previ-
ous stage, the Execution Stage is entered. In the meta model for package Execution-

Stage (figure 4), the test of a test object on the functional level is depicted. In this
stage, both the SUT and the testing system are executed in parallel.

6



SystemUnderTest

Operation

TestSuite

Instrumentation

TestRunner

TestFramework

TestOperation

TestExecutionUnit
ex

ec
ut
e

TestingSystem

Input

generate

feedOutput produce

interpret

+none
+pass
+inconclusive
+fail
+error

«enumeration»
Verdict

TestProtocol

produce

TestFramework

TestObjectAttribute

invokechange

in
vo

ke

TestCase

SystemUnderTest

ExecutionStage

provide_access

Figure 4: The Execution Stage

The description here is based on the idea of regarding a test object as a state-
machine, as it has been worked out in [3]. Inputs are generated by the test operations,
implemented in the previous stage. By interpretation of results, test verdicts are derived
and both results and test verdicts are logged in a test protocol as a preparation for a
subsequent test analysis.

The prefabricated test framework has to provide support to execute test cases or test
suites. This support is modeled as the class TestRunner in package TestFramework.

3 Case Study: Test of Multi Agent Systems

Connector-based Multi Agent Systems Multi agent systems are a technology for
the development of distributed component-based systems [4]. A multi agent system is
based on agents, autonomously acting components which solve problems in cooperation
with each other. This cooperation can happen beyond the limits of one computer, not
only by remote communication, but also by migrating agents (mobile code). Agents

7



communicate technically by invoking interface functions or by sending events. On the
logical level, inter-agent communication can be based on standard protocols, for instance
the FIPA communicative acts [6].

In the agent platform Software Architecture type-based Development Environment for
Multi Agent Systems (ADE) [7], communication protocols are not implemented in the
agents themselves, but in separate connectors. Thus, agents do not communicate directly,
but provide interfaces at so-called ports to which a connector is bound during commu-
nication. The connector actively executes the communication protocol by invoking the
agents’ interface functions, while the agents themselves stay passive. When the commu-
nication has finished, the connector is unbound and released again. This architecture for
multi agent systems has been developed following the ideas of the component/connector
architecture by Shaw and Garlan [14].

Testing a multi agent system following this architecture is different from testing one
which only consists of agents. Since a direct communication between testing agents and
tested agents is not possible, and since connectors also implement functionality which
must be tested, the test process must be adapted for these systems. Furthermore, a test
infrastructure must be developed, to support the test of connectors as well as the test
of agents. An appropriate test process has been developed as a set of patterns based on
the meta models defined earlier in this paper. On the same basis, the test infrastructure
has been designed and implemented.

A Test Infrastructure for Connector-based Multi Agent Systems As we described
earlier, testing a multi agent system following the component/connector architecture
requires two different approaches. First, the connectors of the system must be tested.
This provides a basis for the subsequent agent component test, because already tested
connectors can then be used to control the SUT. Thus, a specialized test component
framework must be developed, which supports these two concepts. However, there must
still be one central instance to control test execution. This is done by a test runner,
described in the previous section.

Testing a connector requires a relatively complex setup of testing components. The
test runner instantiates a connector test agent. This agent serves as a manager for the
test case and as a collector for test results. It instantiates two stub agents which start
communicating using the connector under test. While doing so, the actual course of the
communication is compared to the expected course with respect to both the protocol’s
control flow and the transfered data. Results of the test case are sent back via the
connector test agent to the test runner and are logged there.

The agent test setup is less complicated. The test runner instantiates an agent test
agent which itself connects to the agent under test using all connectors which are nec-
essary to run the actual test case. Results are again sent back to the test runner. Unlike
the connector test, the agent test can also carry whitebox test characteristics. These
are related to the interface SystemUnderTest::Instrumentation given in sections 2.2
and 2.3. This instrumentation requires the implementation of an additional connector
according to the interface. This mechanism is only available for agent testing because
directly invoking interface functionality on a connector is not possible in ADE.

In figure 5, we depict the design of a test infrastructure for ADE. The package
TestFramework covers several classes, for which a common basic implementation can
be provided. All test case implementations, no matter if they test connectors (class

8



«TestCaseImpl»
AgentTester

«TestCaseImpl»
ConnectorTester

«TestObjectImpl»
AgentUnderTest

SystemUnderTest

TestingSystem

TestFrameworkImpl

TestFramework

SystemUnderTestImpl

ImplementationStage

«interface»
Instrumentation

«interface»
Interface

«TestObjectImpl»
ConnectorUnderTest

«TestCaseImpl»
TestCaseAgent

StubAgent2StubAgent1

te
st

te
st

te
st

InstrumentationConnector

«TestCaseImpl»
MyAgentTester

«TestCaseImpl»
MyConnectorTester

ConnectôrTestWorker

Comparator

Figure 5: Implementation of an agent test infrastructure

9



ConnectorTester) or agents (class AgentTester), inherit from one common class
TestCaseAgent, which implements the communication with the test runner during test
execution. The test runner is not depicted here, since it is part of the Excution Stage. The
implementation of actual test cases for connectors inherit from class ConnectorTester.
It is bound to two connector stubs (classes StubAgent1 and StubAgent2), which play
through the communication protocol with the tested connector (ConnectorUnderTest).
Both stub agents are inherited from a class ConnectorTestWorker from the test frame-
work, which implements the communication between connector stub and connector tester.
An agent tester inherits from the basic class AgentTester of the test framework and
is connected to the agent under test (class AgentUnderTest) by the connectors spe-
cific for the particular SUT. The agent under test can optionally implement the inter-
face Instrumentation to provide direct access to its state. Since not only the inter-
face has to be implemented, but also a connector has to be given, we provide both a
generic interface as well as the appropriate connector as parts of the framework (interface
Instrumentation and class InstrumentationConnector). So, the instrumentation
interface changes its position from the package SystemUnderTest to TestFramework.

Benefits The test infrastructure presented in this section was implemented for the
ADE multi agent platform. Designing such an infrastructure for the ADE compo-
nent/connector architecture is very complex and was well supported by the meta models
presented in this paper, especially the one for the Implementation Stage. Also the test
process for a system based on a strict distinction of components and connectors is intri-
cate, too. To be able to better support this process, we developed a set of test patterns
for multi agent systems on the ADE platform. The structure of this pattern catalog could
be well founded on the test process framework, which we have proposed in this paper.

4 Conclusions

In a software test process, many documents like models and software components are
involved. They have a certain structure themselves and build up a complex web of
relationships between each other. Furthermore, they are transformed over several phases
of the process, which leads to a second dimension of relationships. The requirement of
repeatability of a test process and test-related tasks like knowledge management make
it necessary to structurize the documents related to a test process.

In the main body of this work, we provide MOF-based meta models that form a basis
for a test process framework that allows to manage and document software test processes
in a structured way. Such meta models are also applied on this area by the UML 2 Testing
Profile (U2TP, [1, 12, 13]). This profile, part of the new UML 2.0 Standard, defines a
UML-based language for modeling the artefacts of test systems. Therefore, elements for
the description of the architecture, behavior and data of a test system as well as time
concepts are defined. However, U2TP does not define the appearance of documents over
several phases in a test process. Furthermore, in this paper we do not only describe the
architecture of a testing system and of the system under test (SUT), but also that of a
framework of tools and prefabricated components supporting the software test process.
These three system parts are in contrast to the U2TP clearly modularized in our meta
models, so that the presented work goes beyond the U2TP.

10



The documents, defined in the meta models, cover the testing system, system under
test and test framework structures and their development and usage phases along defi-
nition, implementation and execution. The structural considerations of the test process
can be completed with behavioral considerations in terms of a pattern catalog. Such a
pattern catalog has been developed specifically oriented towards the testing of agents
and connectors in multi-agent systems.

We have applied this test process framework to a case study from the area of multi
agent systems. Thereby, we have concentrated on the implementation stage of the
process framework. In result, a test component framework for multi agent systems on
the ADE agent platform was realized which can be used to evaluate the functionality and
performance of multi agent systems.

An extension of this work would be the application of the test process framework to a
test process, in which the models of an SUT are checked automatically and also the test
cases are designed in a language, which is – like TTCN-3 [5] – platform-independent, so
that the test case models can be used as the implementation of the test cases immedi-
ately. While automatic model checking would affect the package TestFramework in the
Definition Stage by adding further tools like model checkers, the platform-independent
realization of test cases would probably affect the design of the whole Implementation
Stage. The step from the Definition Stage to the Execution Stage would become smaller
in this case, since the dedicated implementation of test cases either becomes obsolete or
at least highly automated.

References

[1] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, S. Lucio, E. Samuelsson, I. Schiefer-
decker, and C. Williams. The UML 2.0 Testing Profile. In Conquest 2004, Nurem-
berg, Germany, September 2004. ASQF Press.

[2] Kent Beck. Test Driven Development. Addison-Wesley Professional, 2002.

[3] Robert V. Binder. Testing Object-Oriented Systems – Models, Patterns, and Tools.
Object Technology Series. Addison-Wesley, 1999.

[4] Hans-Dieter Burkhard. Software-Agenten. In Görz, G., Rollinger, C.-R., and Schnee-
berger, J., editors, Handbuch der Künstlichen Intelligenz, chapter 24, pages 941–
1018. Oldenbourg, München, Wien, third edition, 2000.

[5] European Telecommunications Standards Institute, Sophia Antipolis Cedex. Meth-
ods for Testing and Specification; The Testing and Test Control Notation version
3; Part 1: TTCN-3 Core Language, 2003. ETSI Standard ES 201 873-1 v.2.2.1.

[6] Foundation for Intelligent Physical Agents, Genf. FIPA Communicative Act Library
Specification, Dezember 2002.

[7] Erika Horn and Thomas Reinke. Softwarearchitektur und Softwarebauelemente.
Hanser, München, Wien, 2002.

[8] IEEE. ANSI/IEEE Standard 829 – Standard for Software Test Documentation.
International Standards Organization, 1998.

11



[9] OMG. Meta Object Facility (MOF) Specification, April 2002. version 1.4.

[10] OMG. MDA Guide, June 2003. version 1.0.1.

[11] OMG. UML 2.0 Superstructure Specification, August 2005.

[12] OMG. UML 2.0 Testing Profile Specification, July 2005.

[13] I. Schieferdecker. Integrated System and Test Development with the UML 2.0
Testing Profile. In Eurostar 2004, Cologne, Germany, December 2004.

[14] Mary Shaw and David Garlan. Software Architecture – Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

12


